Development and FEMM-CCS deployment of a suite of autonomous in situ carbonate sensors for the **STEMM-CCS** gas release experiment

Samuel Monk¹, Martin Arundell¹, Rudi Hanz¹, Socratis Loucaides¹, Stathys Papadimitriou¹, Allison Schaap¹, Euan Wilson¹ and Matthew Mowlem¹

¹Ocean Technology and Engineering Group, National Oceanography Centre Southampton, United Kingdom

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654462

Overview

Lab On Chip Overview

Introduction to platform
Operation overview

Chemistry Overview

- Carbonate Chemistry: pH, TA and DIC
- Nutrients: N,P

STEMM-CCS Deployments

- Baseline Landers (Original and v2)
- MPI Benthic Boundary Landers
- ROV Isis
- Underway System

Lab On Chip Sensor

programme under grant agreement No. 654462

Measurement:

- Mix sample and regent to produce a chemical reaction
- 2. Colourimetric optical measurement (generally)

Slide Credit: A. Schaap

LOC pH

- Field-deployable sensor for automated *in situ* spectrophotometric pH measurements
- Low reagent consumption
- No pre-conditioning required
- Low maintenance
- Self-contained with automated control and data logging
- Up to five measurements per hour
- Low power consumption
- High-sensitivity system with a precision of (0.001 pH units) and accuracy of (better than 0.004 pH units)

LOC Total Alkalinity

Measure the pH of the degassed acidified water

Dissolved Inorganic Carbon: System Overview

Acidify the sample to convert the DIC to CO₂ gas

Diffuse CO₂ gas into an acceptor solution

Measure the changes in the acceptor solution conductivity

STEMM-CCS DEPLOYMENTS

-

Develogic Baseline Lander

N, P ran for 6 months, but data not ideal pH ran but has no real data – dye bag tubing was ripped

out

Replacement Baseline Lander

Deployed for 25 days (pre-gas to post-gas) Battery-powered, mostly measuring 2 hourly (pH hourly) N, P, pH worked well the whole time; TA is off-and-on quality and **DIC died early**

Experimental site layout

Schematic credit: A. Schaap

ved funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654462

MPI Benthic Boundary Layer Landers

Deployed ~3 m south of the bubbles 7 deployments of 48 hours Substantial weight limitations meant a lot of turn-around work

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654462

Summary

- 33 LOCs built and taken on JC180 (36 returned)
- 3 old sensors returned from original baseline lander (Develogic)
- ~200 sensor deployments
- 3 Sensors broke but fixable sensors
- New TA and DIC sensors recorded meaningful data
- More data from Allison's talk (tomorrow)

