Ocean and Earth Science, National Oceanography Centre Southampton

Underground CO₂ Storage Assurance

The Assessment of Onshore Geological Analogues of Fluid-Escape Structures Ben Callow

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654462

Thank you to the 'CCUS' Research Community

- STEMM-CCS
- CHIMNEY
- CarbFix
- ACT-DETECT
- GAS-RIP

- IEAGHG
- UKCCSRC
- SIRG

Geomechanical Assessment of CO₂ Storage Reservoir Integrity Post-closure

OVERVIEW: CO₂ LEAKAGE PATHWAYS IN THE SUBSURFACE:

- 1. Faults
- 2. Drilling wells
- 3. Fluid-escape structures:
 - Sandstone intrusions
 - Seep structures

Fluid-escape structures currently poorly understood..

Sub-vertical structures are difficult to image using seismic reflection

Adapted from Cobain et al. 2015

- 1. Highlight the geographical abundance of fluid-escape systems observed in the North Sea.
- 2. Description of fieldwork in the Panoche Hills, California An onshore geological analogue of fluid-escape.
- 3. Quantify the temporal evolution of porosity-permeability -From when active fluid flow was occurring, to present day.
- 4. Implications for safe and permanent CO₂ storage

FLUID-ESCAPE SYSTEMS IN THE NORTH SEA

1. Sediment remobilisation at depth 2. Seep structures in the shallow sub-surface

FLUID-ESCAPE SYSTEM

Maps from Google Earth

A fluid escape-system is observed, from sand intrusions at depth, to carbonate mounds (Palaeo-pockmarks) at a Palaeo-Seafloor.

ESCARPADOS CANYON

MARCA CANYON

- Sandstone dykes intruding and terminating at carbonate mounds Seep carbonates.
- Dykes are carbonate cemented Carbonate reduces porosity-permeability.

MORENO GULCH

• Sandstone sills are orientated parallel to mudstone beds

• The sand intrusions are sourced from older depositional sand units

MORENO GULCH

- 600 m of vertical exposure
- Sandstone dyke intrusions orientated perpendicular to bedding.

- 1.5 mm
- Siltstone Upper slope / shelf-edge facies

1.5 mm

• Siliceous mudstone – Lower-mid slope facies

MORENO GULCH

- Samples collected at a range of stratigraphic depths.
- Silica cement derived from host mudstones.

METHOD – 3D X-RAY MICRO-CT

- Absolute permeability simulation
- Callow et al. 2020 'Optimal X-ray micro-CT image based methods for quantification of porosity and permeability in sandstone' – in review (GJI)

RESULTS – POROSITY-PERMEABILITY

Cement & Clay Removed

Silica cementation

 Average permeability of sand intrusions from Alba & Balder fields ~2400 mD

• The effects of sediment consolidation and cementation must be considered...

CONCLUSIONS

- 1. Fluid-escape systems are widely observed in the North Sea. Analogues are used to improve our understanding.
- 2. Porosity-Permeability of fluid-escape systems are significantly effected by silica and carbonate (MDAC) cementation.
- 3. Constraining the presence and timing of cementation is crucial for accurate site characterisation and risk evaluation.
- 4. Fluid pathways appear to reduce in permeability and re-seal through time, which has positive implications for long-term safe and permanent CO_2 storage.

Take home message

"Geological analogues can be used to improve our understanding of the formation and permeability of fluid-escape structures"

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654462

RESULTS – PORE STATISTICS

1.4 mm

- Pores infilled with silica cement
- Cementation causes reduced pore connectivity