
STEMM-CCS @ GHGT-14
Conference papers

Strategies for Environmental Monitoring  
of Marine Carbon Capture and Storage

www.stemm-ccs.eu @STEMM_CCS_EU STEMM-CCS@noc.ac.uk



 

14th International Conference on Greenhouse Gas Control Technologies, GHGT-14 

21st -25th October 2018, Melbourne, Australia 

Ensuring efficient and robust offshore storage – the role of marine 
system modelling. 

Jerry Blackforda, *, Guttorm Alendalb, Yuri Artiolia, Helge Avlesenc, Pierre W. 
Cazenavea, Baixin Chend, Andrew W. Dalee, Marius Deward, Maribel I. García-Ibáñezc, 

Jonas Grose, Kristian Gundersenb, Matthias Haeckele, Sorush Khajepord, Gennadi 
Lessina, Anna Oleynikb, Abdirahman M. Omarc, Umer Saleemd.  

a Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK 
b Department of Mathematics, University of Bergen, Bergen, Norway 

c Uni Research Climate, Bjerknes Centre for Climate Research, Bergen 5008, Norway 
d Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK 

e GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany  

Abstract 

This paper describes the utility of developing marine system models to aid the efficient and regulatory compliant 
development of offshore carbon storage, maximising containment assurance by well-planned monitoring strategies. 
Using examples from several model systems, we show that marine models allow us to characterize the chemical 
perturbations arising from hypothetical release scenarios whilst concurrently quantifying the natural variability of 
the system with respect to the same chemical signatures. Consequently models can identify a range of potential 
leakage anomaly detection criteria, identifying the most sensitive discriminators applicable to a given site or season. 
Further, using models as in-silico testbeds we can devise the most cost-efficient deployment of sensors to maximise 
detection of CO2 leakage. Modelling studies can also contribute to the required risk assessments, by quantifying 
potential impact from hypothetical release scenarios. Finally, given this demonstrable potential we discuss the 
challenges to ensuring model systems are available, fit for purpose and transferable to CCS operations across the 
globe. 
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1. Introduction 

Offshore geological storage options are available in many countries; however demonstrating robust storage poses 
some unique challenges in the marine environment. To comply with regulations and assure against false accusations, 
traditional seismic imaging of the storage complex and overburden can be complemented by monitoring at the sea 
floor for biochemical or physical anomalies, such as excess CO2 concentrations or gas bubbles. Sea-floor techniques 
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may have better sensitivity than seismics and contribute to all parts of the detection-location-verification-
quantification process. Outstanding challenges include defining what constitutes an anomaly in a noisy time variant 
environment, and identifying optimal sensor combinations and deployment strategies to provide a sensitive, wide-
ranging, accurate yet economic monitoring system. Here we demonstrate how marine modelling approaches are 
answering these challenges. 

 
Developing a monitoring system requires that we meticulously understand the signals of leakage, and how these 

differ from natural, often highly-dynamic variability. For example, we need to predict the pathways of CO2 transfer 
across the sediment-water interface, its phase chemistry under a variety of environmental conditions, the 
configuration of gas bubbles, their displacement and aqueous dissolution, the movement and dispersion of dissolved 
CO2 plumes and their impact on the marine chemistry. In addition, we need to characterise how the same chemical 
and physical attributes evolve due to natural biological and physical processes. Understanding such “baselines”, 
perhaps better termed natural variability, which will always be site- and season-specific, is critical to facilitate the 
successful detection and quantification of unintended emissions, for the application of corrective actions as well as 
the protection from false alarms.  

 
Marine observations are generally expensive to undertake, requiring boat based surveys or the deployment of 

autonomous underway or fixed platforms. For scientific and practical reasons observations are biased towards the 
surface ocean and periods of poor weather are under-sampled. Consequently, sea floor marine systems are poorly 
described by direct observations, and the data that is available tends to be intermittent and sparse. However coastal 
regions are routinely described by marine system models – typically time evolving, 3D coupled hydrodynamic-
biogeochemical systems which describe physical flows and biogeochemical fluxes, often explicitly modelling CO2 
chemistry (aka carbonate chemistry) and potentially hosting specialist modules, for example of bubble dynamics. 
Such models are run as decadal scale hind-casts and for short-term operational forecasts, both modes often using 
assimilation of observations to improve accuracy [1]. Models are also run in long-term climate forecast mode which 
allows for the assessment of impacts of increased atmospheric CO2 emissions and other anthropogenic factors [2]. 
These models provide terabytes of internally-consistent, evaluated, skill-assessed [3] multi-variate data with 
comprehensive vertical, horizontal and temporal resolution – a virtual marine environment within which we can 
quantify baselines, simulate unplanned release and assess monitoring strategies.  

 

2. Model developments and outcomes 

Within a number of past and ongoing research and development projects, including STEMM-CCS [4], BayMoDe 
[5] and ECO2 [6,7,8,9] the research community has devoted considerable effort to developing and applying marine 
system models to advance offshore storage. We can now articulate the following understanding, advances and tools 
that will facilitate the development of geological storage in the marine domain. 

2.1. Characterization of hypothetical release scenarios 

In the absence of sufficient realistic analogues, models provide the only option to characterize the morphology of 
diverse hypothetical release events via sediments and water column (Fig 1), and thereby quantify detection targets. 
Offshore analogues of CO2 release (natural seeps) do exist and can be helpful in establishing broad scale 
understanding of phenomena, however these are substantially variant from a CCS scenario. For example methane 
seeps, often biogenic in nature, are common, but methane has distinctly different solubility characteristics in 
seawater compared to CO2 [10]. CO2 seeps are also found in the marine environment, but often associated with 
volcanic activity, such that their location and environmental characteristics are not a close match with existing and 
potential storage sites. Controlled deliberate injection/release experiments are expensive and therefore rare [11] and 
whilst informative [12] deliver limited scenario variability.  

 
A number of studies have used combinations of sediment, hydrodynamic and biogeochemical models to 
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characterise a wide variety of “leakage” scenarios. The primary varient between these studies is the spatial model 
resolution and the release rate tested. A-priori information on potential leak scenarios is by definition scant as the 
only expected scenario is no release. Consequently modelled scenarios range from the smallest rates that could be 
sensibly resolved by a particular model system to upper limits defined by injection rates, or especially in early 
research even more extreme releases, designed to demonstrate certain environmental consequences rather than be 
constrained by the operational reality of storage. Typically operational shelf models have resolutions of the order of 
10 km in the horizontal, which are only suitable to represent dissolved phase plumes with footprints an order of 
magnitude larger [13]. However shelf scale models with resolutions approaching 1 km [14] have been applied as 
have sub-regional model domains whose resolution can be as fine as 1 m [15,16] , which allow very small release 
rates to be tested. These ultra-high resolution models also allow multiphase simulations, including the dynamics of 
bubble plumes as well as the dissolved phase [17]. Models of the upper layers of unconsolidated sediments [18] 
further enable the characterisation of multiphase flow and inform the morphology of leakage, in particular the nature 
of flow across the sediment-water interface which can modify the distribution of CO2 plumes in the vicinity of the 
release point(s) and crucially affects the initial plume height with implications for broader scale dispersion and 
outgassing to the atmosphere as well as the visibility of gas bubble plumes to acoustic detection.  
 

 
Figure 1. a) Flow through porous media in the pore scale (by a Lattice Boltzmann model, shown in terms of fluid pressures); b) Flow through 
porous media (red) and into the water column (white) in the meter scale (by a Navier-Stokes Darcy model shown in terms of void fraction); c) 
CO2 bubble plumes rising and dissolving in the water column (by a multiphase plume model shown in terms of bubble size – mm); d) flow of 
dissolved CO2 solution in the water column (by a multiphase plume model shown in terms of dissolved mass concentration). 
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As a result of this combined body of work we have a growing set of quantified release scenarios, ranging over at 
least seven orders of magnitude (see Fig 5). Primarily plume size (and therefore impact and detectability) relates to 
release rate according to a power law, consistent with the general dispersion of substances in marine environments 
[19]. However very significant variability of plume morphology is driven by the spatially and temporally varying 
tidal mixing vectors and seasonal weather-related phenomenon such as the degree of stratification and wind-induced 
mixing. Plumes are highly dynamic in space and time, often circulating around a release point on a tidal ellipse, with 
the strength of the perturbation decreasing with distance from the release point (Fig 1d). 

2.2. Understanding and quantifying natural variability 

Natural variability of marine CO2 (Fig 2) may mask the signal from an unplanned release, and can also help to 
define the unperturbed state should an environmental impact assessment be necessary. Observational studies have 
demonstrated that the degree of variability itself varies according to location and season and is driven by a complex 
range of factors, which may include advection of water masses of different origin, influence of nearby riverine 
plumes, atmospheric CO2, temperature, biological activity and in-situ mixing [20]. Conducting a comprehensive 
survey of the carbonate system to characterize the diurnal-seasonal-inter-annual and spatial variability of a particular 
storage site could be prohibitively expensive. However coupled model systems, which include sufficient process 
definition enable us to predict, extrapolate and quantify natural variability and its heterogeneity. A sufficient model 
system should include fully 3-dimensional hydrodynamics, riverine inputs, exchanges with open ocean boundaries 
and the atmospheric system, representation of biogeochemical processes especially community respiration and 
primary production and a fully resolved implementation of carbonate chemistry [21]. 
 

 
Figure 2. a) Annual range of seafloor pH (indicating CO2 concentration) in the North Sea and b) mean pH using the NEMO-ERSEM model; c-e) 
contrasting evolution of baseline chemistry at different North Sea sites extracted from the model. Green shading shows the local variability, lines: 
green - daily mean, blue – annual mean, orange – acidification trend. 
 

The example shown in figure 2 illustrates that within one regional sea, there are very distinct short-term, seasonal 
and inter-annual CO2 dynamics, here using pH as a measure of concentration of CO2. The annual range of pH varies 
between 0.5 pH units or more in shallow near shore environments where riverine influences are high, as are 
productivity cycles, to 0.1 pH units in deeper more oceanic conditions, where external influences and productivity 
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are minimized. Variability in shallow coastal regions tends to be dominated by seasonality whilst offshore, inter-
annual variability and climate oscillations tend to be more influential. Only the long-term trend associated with 
ocean acidification is relatively constant across the region as this is a broad scale phenomenon driven by 
atmospheric CO2 concentrations. On sub-diurnal timescales variability is driven by a combination of tidal mixing 
and the light-dark cycle of production/respiration. In the same region, changes within 24-hour periods are predicted 
to be of the order of 0.01-0.05 pH units, with maxima associated with peak biological and physical events [22]. 

2.3. Defining anomaly criteria 

Perturbations arising from a release may be small, and of a similar magnitude to natural changes in CO2 
concentration especially if monitored at some distance from a release point. The challenge therefore is to develop 
highly sensitive criteria that identify anomalous chemistry as distinct from natural dynamics, minimizing the chance 
for false positives. By combining models of release scenarios and natural variability we can use these models to 
identify optimal detection criteria, identifying the most sensitive discriminators applicable to a given site or even 
season and identify the site-specific detection threshold.  

 
A number of criteria have been investigated, falling into two categories. The first is based on detecting departures 

from normal stoichiometric relations. Natural changes in CO2 concentration occur because of biological, chemical or 
physical processes, all of which create signals in other measurable variables. For example, the biological uptake of 
CO2 during primary production is always accompanied by an equivalent release of oxygen, vice-versa for 
respiration. Such biological processes also affect nutrient concentrations. Natural changes in CO2 arising because of 
mixing or advection of different water masses will also be accompanied by changes in temperature and or salinity. 
Although definition of natural stoichiometric relationships has been based on observational data sets [23,24] , 
models of sufficient complexity can be used to extend these definitions dynamically over larger areas and longer 
time periods [25], as well as defining the optimal combination of variables [26].  
 

 
Figure 3. Theoretical anomaly detection thresholds, expressed as the rate of pH change relative to the sampling interval. Any rate change larger 
than indicated would suggest an anomaly requiring further investigation. Lines represent three different sites and two different years. 

 
The second category utilizes the fact that given the mobility of CO2 plumes, sensors (whether fixed or themselves 

mobile) are likely to be exposed to fluctuations in CO2 over space and timescales that are different from the 
spatiotemporal gradients that result from natural processes [22,27]. By using models to define these natural 
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spatiotemporal gradients it is possible to then identify gradient-based thresholds which can be used to identify 
anomalous signals. For example if monitoring can approach sub-hourly frequencies, which is entirely within the 
capability of existing platforms, then criteria as sensitive as a change of pH of 0.01 unit over 20 minutes or less 
could be a reliable indicator of a release (Fig 3). 

2.4. Optimizing sensor deployment and locating leaks 

Designing monitoring programs to detect discharges which could theoretically occur anywhere within an area of 
several hundred square kilometres is challenging, one must take into account the variability of the marine 
environment and ocean dynamics. However, even if one can distinguish between CO2 from a release from that due 
to natural variability, it is an additional challenge to identify the leak location. Building on knowledge of leak 
morphology, natural variability and anomaly criteria, models allow us to devise the most cost-efficient deployment 
of sensors to maximise detection. By quantifying how water movement impacts dispersion of CO2 plumes, models 
can determine the minimum number of sensors and their optimal locations [28,29,30] , or the optimal deployment 
pathway of Autonomous Underwater Vehicles (AUVs) to maximise the likelihood of detection using Bayesian 
techniques [31] (Fig 4). Research is underway to develop machine learning techniques [32], inverse methods [33] 
and “greedy set” algorithms [34] to further optimise survey design.  

 

Figure 4. a) Optimal Autonomous Underwater Vehicles (AUV) route for rapid detection in an area with 15 wells (lower left corner) derived from 
Bayesian analysis. Measurement locations are shown in blue, AUV pathways as red lines whilst the background colour represents the probability 
of a leak at that location. b) Optimal sensor placements using simulation of 36 leaks at different locations with constant flow-rate and fixed 
detection threshold. Sensors placed such that any of 36 leaks would be detected while keeping the number of sensors minimal. c) Pseudo-colour 
plot of the averaged (in time) concentration c(x; t), measurement locations (crosses) and estimated leak locations (circles) using linear transport 
equation with sparse optimization method. 
 

Model simulations suggest that a release event of 1 T day-1 may be detectable at 50 m distance, scaling to 5 km 
distance for a 100 T day-1 release, although local hydrodynamics would cause significant variability in the detection 
length-scale. 
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2.5. Risk assessments and communication 

Environmental risk assessments are generally required by permitting authorities [35]. If required, marine models 
could contribute by quantifying potential impact from hypothetical release scenarios. These can utilize either the 
established relation between leak rate and affected area (Fig 5) or where specific risks are identified involve more 
detailed model studies in which impacts to species are explicitly coded into simulation models [36]. Such models 
can also consider other existing or potential stressors on a particular environment, as multiple stressors are generally 
recognized as more than cumulatively impactful on ecosystems. Additionally the accumulation of model scenario 
assessments can be used to inform stakeholders, including the public, regarding risks. Studies show that the potential 
impact from a small CCS leak will be very local (Fig 5), and that only catastrophic scale releases are likely to have 
some degree of regional scale impact. Importantly risks from CCS must be contrasted with risks of not performing 
climate mitigation, which are likely to be global and severe.  

 
Figure 5. Model ensemble relationship between CO2 release rate and impacted area. The size of a typical sports pitch (e.g. football) is indicated as 
a reference point. A decrease of 0.1 pH unit is a conservative indicator of impact potential.  
 

3. Translation to operational capability and further challenges 

The bad news for offshore CCS storage operations is that marine environments are so diverse that a generic 
definition of baselines, anomaly criteria and monitoring strategies will have little value, although the fundamental 
principles will be transferable from location to location. The positive outcome is that we can use models, ideally 
coupled with some observational data to ensure accuracy, to work out optimal criteria and strategies for individual 
storage sites, which will both minimise the cost of such monitoring whilst maximising rigour and thereby public 
acceptance. 

 
It is the case that suitable marine models require a significant effort to develop, evaluate and interpret. They are 

often computationally expensive to run and models that are bespoke to particular storage sites are necessary. 
However, it is also the case that the majority of sites under consideration for offshore storage are already described 
by relevant model systems that at least resolve 3D hydrodynamics, boundary forcing and some degree of 
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biogeochemistry; such systems are already used for a variety of research and operational purposes. Many model 
systems now explicitly model carbonate chemistry, given the research interest in ocean acidification, and new model 
systems with high resolution are becoming more common. There are several examples cited here where existing 
model systems have been adapted to address CCS challenges, and where models are not yet optimal, code transfer 
can generally minimise further development effort. 

 
Using appropriately skilled models to derive baseline understanding, explore release scenarios and optimal site 

specific detection criteria is far more cost effective than deploying large observational programmes. However, 
model evaluation and quality assessment require in-situ environmental data, and establishing environmental 
baselines should be an intrinsic part of site characterisations. To assure adequate yet inexpensive baseline 
observations, early involvement of the marine modelling community is recommended, such that observational 
programmes can be targeted efficiently. However, there is much to gain by ensuring that national scientific 
monitoring programmes facilitate the monitoring required for CCS activities. Key parameters for CCS are common 
to those required for many other research purposes, e.g. temperature, salinity, pH, pCO2, O2, productivity, nutrients, 
etc. Perhaps the harder challenge is to reduce the bias towards sea surface measurements and to increase the 
frequency of observations such that variability on all scales is adequately captured. 

 

Figure 6. The multi-scale, multiphase numerical model, with forcing down from global scale data (the top left); into the shelf-seas / coastal scale 
(top middle shows the mesh, bottom left shows sample currents); with a nested ghost model reducing the scale to the meter scales (top left 
showing the mesh, bottom middle shows the flow of dissolved CO2 solution); including an example CO2 leakage plume module (bottom left, 
providing the dissolved solution distribution and dynamics of the bubble plume in the model). 
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In terms of further model development, a number of initiatives are underway. One such (Fig 6) is aiming to 
combine an ability to accurately represent currents and ocean scale mixing phenomena with an ability to model the 
ultra-fine scale of bubble dynamics and multiphase chemistry. Other initiatives are developing an ability to simulate 
high-resolution leakage scenarios with concurrent simulation of natural biogeochemical processes. Whilst such 
models are not necessarily optimal for operational use currently, due to computational costs, they do allow for 
testing and hypothesis development and the production of sufficiently accurate simpler models. 
 

Models can therefore address all aspects of the detection, confirmation/localisation and quantification processes 
required as part of a comprehensive monitoring system. However, models cannot completely supplant in-situ 
measurements, observed data will be essential for model validation and quality assessments. A symbiosis between 
seagoing research and theoretical modellers will be a win-win situation, providing data for model assessments and 
development generating further process understanding and iteratively optimising measurement programs.  We argue 
that it is critical to ensure that observational programmes, models and their data products that are already delivered 
by national science programmes for a variety of uses are optimised for CCS applications, where necessary. Open 
source software tools that enable bespoke analysis of variability, leak morphology, monitoring strategies and impact 
assessment on a site-by-site basis can then be developed, providing the base data requirements are met. 
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Abstract 

Evaluation of seismic reflection data has revealed structures cross-cutting the overburden within many sedimentary basins 
worldwide, including those in the North Sea and Norwegian Sea. These seismically-imaged pipes and chimneys are considered to 
be possible pathways for fluid flow. Natural fluids from deeper strata have migrated through these structures at some point in 
geological time. We test the hypothesis that many chimney and pipe structures imaged on seismic reflection profiles worldwide 
are the consequence of (1) a fracture network that has been reactivated by pore fluid pressure which facilitates the migration of 
fluids upwards; and (2) shallow sub-seafloor lateral migration of fluids along stratigraphic interfaces and near-surface fractures. 
An experimental approach to determine the physical properties of these structures beneath the sub-seafloor is described, with 
particular reference to an investigation of the Scanner Pockmark complex in the North Sea. The study is relevant to storage 
operators, policy-makers and those keen to demonstrate that it is possible to constrain and fully understand the physical 
properties and possible fluid flow pathways in the sedimentary overburden above sub-seafloor CO2 storage reservoirs 
Keywords: seismic chimney; pipe; fluid flow; fracture network 

1. Introduction 

Numerous geological structures within sedimentary basins can breach sealing sequences and facilitate the 
movement of fluids sub-vertically [1,2,3]. Seismic reflection data within sedimentary basins have been used to 
image the subsurface, allowing interpretation of potential migration pathways, and also to identify vertical fluid 
conduits, gas accumulations, and sediment mobilization (pockmarks etc.). There is agreement that there is ubiquitous 
evidence for focused fluid flow through low permeability sedimentary units. 

Seismic chimneys and pipes (vertical seismic anomalies) are common in basins and they are interpreted as 
focused fluid flow structures which hydraulically connect deeper stratigraphic layers with the sediment overburden 
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(4,3]. The activity of vertical fluid conduits can be limited to blowout-like events, e.g. resulting in pipe structures 
offshore Norway [5], or fluid flow may be continuous and long-lasting, e.g. the chimney structures above the leaking 
hydrocarbon reservoir Tommeliten [6]. Understanding of these shallow fluid flow systems is critical for assessing 
the integrity of sub-seafloor CCS sites. 

One of the most comprehensive analysis of a fluid migration features in the North Sea [3] analysed large 3D 
seismic reflection volumes within the South Viking Graben and found 46 large-scale chimney structures within the 
shallowest 1000 m of the overburden, most of which terminate at or close to the seabed. The most prominent 
features imaged had large-scale (500 – 800 m long, 100 to 1000 m wide) seismic anomalies, whose pipe or chimney-
like seismic signatures were similar to those interpreted world-wide as being due to vertical fluid flow. Vertical 
seismic anomalies interpreted as being due to fluid flow are found throughout the North Sea [e.g. 7,3,2,6], and 
globally [e.g. 1,8].  

Karstens and Berndt [3] describe three types of North Sea chimney structures. Type C anomalies are elongate and 
meandering in plan view, and are possibly seismic artefacts or related to underlying tunnel valleys, and are 
considered less important in vertical migration of fluids and seal bypass, and we do not consider further. Type A 
“columnar” anomalies, or pipe structures and type B more “chaotic” anomalies are interpreted as the seismic image 
of fluid conduits that have by-passed the sealing formation (Nordland Shales), with the presence of bright spots 
clearly indicating the presence of gas within the structures. Most authors attribute the formation of chimneys or pipes 
as being due to hydro fracturing of an impermeable cap rock [1,2,3] with breaching of the cap rock caused by either 
capillary or fracture failure. Localization of fluid flow is a common feature of fracture networks [9]. Both these 
mechanisms for cap rock breaching require high pore over pressure.  

Field core from the North Sea overburden has revealed the Cenozoic section to be pervasively faulted and 
fractured, with extensive regions of well-connected polygonal faulting occurring immediately below the Utsira 
Formation [10]. The Utsira sand is a major reservoir (used at Sleipner), with high porosity (>30%) and permeability 
(>1000 mD or 10-12 m2). The overlying Nordland Shales provide a series of seals to this reservoir and has <<1mD 
matrix permeability and >2 MPa capillary pressure. The dynamics of the CO2 plume in the Sleipner well suggest 
high horizontal permeabilities of >2000mD and, more significantly, high vertical permeability (~400 mD) or 
capillary pressures of >2000 kPa and 50 kPa, respectively. Vertical permeability in the Nordland suggests either 
lateral discontinuity of the shales (unlikely as some are several metres thick) or the presence of fractures (most 
likely). At Sleipner, there are no gas chimneys and the fracturing is attributed to microfracturing, possibly in 
response to the sudden removal of grounded ice [11]. 

2. Scanner Pockmark 

This paper describes results from two geophysical cruises to the Scanner pockmark complexes in the North Sea. 
The Scanner pockmark complex is located in UK License Block 15/25 (Figure 1), around 190 km east of Scotland 
within the Witch Ground Basin close to a number of oil and gas condensate fields. The closest field to Scanner is the 
decommissioned Blenheim Oil Field, which is a heavily faulted Palaeocene sandstone play on the flank of the 
Fladen Ground Spur (Figure 1). Within the Blenheim field, structure maps of the Late Palaeocene Top Mey 
Sandstone [12] show a dominant NW-SE normal fault set. 
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Fig. 1. Position of the Scanner Pockmark within the North Sea. The Scanner pockmark complex is within the Witch Ground Graben. 

The Witch Ground Basin was the locus of rapid fine-grained sediment deposition between 15 and 13 ka after the 
end of the last glacial period. The soft muds of this formation are affected by large numbers of pockmarks [13]. 
Following the stabilisation of sea level after the last glaciation, the Witch Ground has been little affected by erosion 
or sedimentation, and hence pockmarks at the current seabed show the effects of gas escape over at least the last 
6000 years. Although most pockmarks are small, less than 2 – 3 m, several studies have identified the presence of 
large pockmarks within Block 15/25 with very active methane venting [14,15].  

The Scanner pockmarks are known to be the locations of vigorous and persistent methane venting, are associated 
with bright spots at shallow depth, and have chimney structures imaged on seismic reflection data to depths of 
several hundred metres. The Scanner pockmark is a composite feature involving two overlapping seabed pockmarks, 
each a few hundred metres in diameter, lying in c. 155 m water depth. Within the pockmarks samples of methane-
derived authigenic carbonate (MDAC) have been recovered [16]. These MDAC deposits are formed by the 
anaerobic oxidation of escaping methane, cementing sediment grains just beneath the sea-bed, which with the 
process of continued gas movement across the seabed, become a hard ground.  

In this paper we describe an experimental methodology to determine the physical properties and geometry of a 
representative chimney structure within the North Sea (Scanner Pockmark, Figure 1). The main aim of this study is 
to understand the physical properties of seismic chimney structures, develop appropriate methodologies which are 
widely applicable in the North Sea and elsewhere, and to model gas flux for realistic scenarios. The structure of the 
chimney may contribute to the understanding of causes of breaching, but this is not a primary aim of this paper. 

3. Evidence for small scale seismic chimney formation - QICS 

Although on a much smaller scale, some analogies can be made with the chimney structures induced during the 
QICS experiment. A shallow controlled sub-seabed CO2 release to replicate small-scale, but realistic, leakage that 
has migrated into the near-seabed environment was completed on the west coast of Scotland [17]. A borehole was 
drilled from shore, to a depth of 11 m beneath the sea floor, in 12 m of water and 350 m offshore. A total of 4.2 
tonnes of CO2 was injected into the overlying sediments, over a 37-day period, during which flow was increased 
from 10 to 210 kg d-1. Repeated seismic reflection imaging [18] demonstrated the formation of chimneys as gas 
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migrated upwards by fracture propagation and reactivation of pre-existing fractures, and subsequent spreading of gas 
along the shallow stratigraphy. 

4. Models of Seismic Chimneys 

Our hypothesis (Figure 2), based on previous literature, and the QICS experiment, is that seal breaching occurs 
due to reduced effective stress and leads to either reactivation of pre-existing fractures, or opening of new fractures 
and the generation of a localized connected fracture system. Gas-rich pore fluids then exploit these locations, with 
buoyancy causing vertical migration through the linked fracture system. It is this combination of localized vertical 
migration and lateral flow that is imaged from 4-D seismic (as in the plumes at Sleipner) as chimney structures. Thus 
the chimneys resolvable from seismic reflection data provide a first order prediction of potential areas of leakage, 
but the overlying sediment beds may disperse such vertical flow, making direct detection at the surface more 
difficult.   

 
 

 

Fig. 2. Conceptual model for a seismic chimney structure which extends close to the seabed. The diagram shows that the overburden sediments 
are pervasively faulted. Where seal rupture occurs (A) pore fluids drive fracture propagation and linkage (B) allowing fluids to rise due to 
buoyancy and elevated fluid pressure. In the near surface fluids will migrate along impermeable stratigraphic interfaces (C). In rare situations 
fractures may propagate to the very near-surface (D) or even rupture the seabed. 

5. Experimental Approach 

Our experimental design uses multiple seismic sources with different frequency bandwidths to collect seismic 
reflection data on surface streamers and wide-angle data recorded on ocean bottom seismometers to characterize the 
fracture system within and around the Scanner pockmark gas chimney in the North Sea. We collected an innovative 
broadband multicomponent seismic dataset, and are performing a state-of-the-art anisotropy analysis to characterize 
the fracture system. The wide frequency-band (10 Hz – 6 kHz) in our data set will allow us to apply techniques 
based on the frequency-dependence of seismic anisotropy, allowing a more detailed picture of the fracture system to 
be developed than through conventional methods. 

Our hypothesis on the formation of gas chimneys suggests that there should be a different fracture geometry 
outside the chimney compared to inside, with the chimney being associated with connected fracture sets, with 
possible concentric fracture distributions. To test this hypothesis requires state-of-the-art seismic techniques. 

It is well established that the most accurate and reliable seismic fracture detection requires multicomponent data 
[19]. The measurement of seismic anisotropy, particularly using shear-wave splitting, has been established as a key 
technique to infer orientation and density of fracture networks [20]. Techniques such as estimation of the coherency 
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of stacked seismic images [21] are able to image larger fractures, but it is only through consideration of anisotropy 
that we can obtain information on the key features which are at sub-seismic resolution. 

Theoretical work [22,23,24] predicts that properties such as fracture scale length and fluid saturation can be 
inferred from the frequency-dependence of anisotropic attributes. Recent work in Southampton and Edinburgh has 
established key relationships between fracture parameters, rock properties, fluid saturation and seismic anisotropy. 
The theoretically predicted relationship between shear-wave splitting and fracture density has been verified [25] 
through laboratory measurements on synthetic rock with controlled fracture geometry, and with fluid viscosity 
effects [26]. More recently, the impact of partial saturation on anisotropy and attenuation in fractured materials has 
been studied [27,28,29]. This latter work develops models that can link laboratory and field datasets 

The excess permeability associated with a fracture system is likely to be strongly dependent on the degree of 
connectivity. This in turn is typically related to the range of fracture orientations, since fracture sets in multiple 
orientations may have more connections than a single aligned set. The greatest anisotropy is often associated with 
perfectly aligned fractures, and the most permeable zones show the least anisotropy in reservoir formations. Our 
hypothesis has unconnected vertical fractures outside the chimney that are preferentially aligned with the regional 
stress field, with connected and possibly concentric fracture systems within the chimney. If this is so, we would 
expect to see significant differences in anisotropy outside and inside the chimney. Such differences would include 
not only the strength of the anisotropy but also the symmetry system, with aligned fractures giving rise to azimuthal 
anisotropy, described by transverse isotropy with a horizontal symmetry axis, and concentric fractures showing little 
azimuthal anisotropy, with the response being described by transverse isotropy with a vertical symmetry axis. Our 
analysis will test our hypothesis by differentiating between these symmetry systems.  

Our surveys used ocean bottom seismometers (OBS) to measure the converted waves which are known to be 
essential for characterizing fracture systems. A key component of our approach is to use three seismic sources with 
different frequencies, in the range 10 Hz to 6 kHz (low frequency airguns, GI guns, sparker systems). This approach 
will provide a unique opportunity to study the frequency-dependence of anisotropy over a much wider frequency 
range than has been used in previous studies. To our knowledge, this will be the first survey of its kind, and 
successful completion would likely lead to significant impact in the wider geophysical industry. 

Our experimental design builds on that developed for a chimney structure in deeper water [30]. We deployed a 
grid of OBSs, centred on the chimney structure, with spacings increasing radially from c. 200 m to c. 400 m, with 
two OBS positioned 20 m apart in the main pockmark. In addition a smaller asymmetrical grid of OBS was 
positioned away from the pockmark to determine the background anisotropy (Fig. 3). These instruments recorded 
every shot from our range of seismic sources, using a hydrophone and three orthogonal geophones and a sample 
interval of 0.25 ms. We fired our seismic sources separately repeating grids of lines, with line spacing as close as 25 
m. 

6. Geophysical Experiment at Scanner Pockmark 

RRS James Cook 152 (funded by NERC, CHIMNEY) successfully completed two anisotropy experiments over 
the Scanner and Challenger pock marks by shooting various seismic sources into a grid of 25 and 7 ocean bottom 
seismometers respectively (Figure 3). Five different seismic sources (Bolt airguns, GI guns, Squid surface sparker, 
Duraspark surface sparker, and Deep Tow Sparker) were recorded by the ocean bottom seismometers (Figures 4), 
and an acoustic recorder deployed c. 25 m above the seabed. Multichannel seismic reflection profiles were collected 
with GI guns (Figure 5) and both surface sparker sources, and single channel seismic reflection profiles were 
collected with the Deep Tow Sparker source. In addition data collected by Maria S. Merian (funded by STEMM-
CCS) collected seismic reflection data using GI guns, and these sources were recorded on 18 Ocean bottom 
seismometers (OBS) around the Scanner pockmark. The results from the two cruises will be integrated together to 
test the chimney model hypothesis. 
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Fig. 3. Location of all instruments deployed during JC152 superimposed on the seabed bathymetry. The red circles show the position of the 25 
ocean bottom seismometers (OBS) deployed at the Scanner pock mark and a reference site during the first part of the cruise, and the position of a 
further 7 OBS deployed around and north of the Challenger pock mark. The yellow triangles show the position of acoustic recorder deployments 
to record source signatures. The position of the OBS record illustrated in Figure 4 and seismic reflection profile shown in Figure 5 are shown. 

 

 

Fig. 4. Example Ocean Bottom Seismometer data collected close to Scanner Pockmark (position shown in Figure 3). This example is an in-line 
GI-gun profile from OBS8 of the Chimney OBS Network. A velocity reduction of 2.1 km/s has been applied. 
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Fig. 5. Pre-stack depth migrated seismic reflection profile collected with a GI-gun source across the Scanner Pockmark during JC152 (position of 
profile shown in Figure 3). Note the position of the bright amplitude anomalies beneath the pockmark and a seismic chimney structure. The 
presence of gas in the sub-surface, and the chimney structure will be further tested by tomographic and anisotropic analyses. 

7. Analysis and conclusions 

Preliminary analysis of 2D seismic reflection profiles shows the overall shape of the sedimentary succession in 
the Scanner pockmark region. Between the seafloor and the well-stratified sediments of the Nordland formation 
(200-350 ms TWT) clear indications for several stages of deposition and erosion are visible. A characteristic tunnel 
valley with steep flanks and several phases of deposition and erosion is located SW of the Scanner pockmark. This 
new high resolution seismic reflection data acquired with the various seismic sources is of high quality, and indicates 
the presence of gas at several different levels and complex areas of gas blanking. The new data reveal a complex 
fluid migration system in the sub-surface which comprises fluids that rise from > 500 m depth as well as gas 
produced within the shallowest post-glacial sediments resulting in a variety of fluid pathways and seep sites at the 
seabed. Seismic anisotropy analysis using the broad band data collected by the ocean bottom seismometer data is on-
going.    
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Abstract 

A 3D hydrodynamic model (FVCOM) coupled to a carbonate system (ERSEM) has been used to model a number of seabed CO2 
release scenarios ranging from 3 to 3000 t d-1 for the Goldeneye complex in the northern North Sea. The results of the scenario 
runs were used to characterise the fate of CO2 in the water column in space and time. A new approach to designing monitoring 
networks has been implemented and compared with a simple approach. A weighted greedy set algorithm is used to identify the 
positions within the model domain which yield the greatest combined coverage for the smallest number of sampling stations, 
further limited by selecting only a feasible number of sample sites. The weighted greedy set algorithm incorporates the effect of 
the unstructured grid in FVCOM as well as the proximity of the candidate sample locations to the Goldeneye complex. For the 
range of release rates simulated, the design of the optimal sampling strategy changes depending on the magnitude of the release. 
The role of the tides discriminates the four release scenarios into two categories: for the lower release rates (3 and 30 t d-1), the 
effect of the tide is relatively unimportant in the distribution; for the larger release rates (300 and 3000 t d-1), the direction of the 
principal tidal axis controls the distribution of the sampling stations more strongly. Comparison of the weighted greedy set 
approach shows it is able to identify releases sooner and with a stronger signal than a simple regular sampling approach. 
Keywords: carbon capture and storage; FVCOM; offshore geological storage; monitoring; marine; climate change 

1. Introduction 

Carbon Capture and Storage (CCS) involves preventing CO2 emissions to the atmosphere, most commonly by 
capturing it at fossil fuel energy generation sites or other industrial sources, and compressing and sequestering the 
CO2 in depleted oil and gas reservoirs and saline aquifers. The Intergovernmental Panel on Climate Change (IPCC) 
reports indicate that CCS is an important strategy in reducing mitigation measure costs around fossil fuel usage [1] if 
atmospheric CO2 emissions are to be reduced by 80-95% before 2050 as required to keep rising average global 
temperatures below 2°C. 
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Many potential storage sites are situated offshore, generally in shelf sea settings. Whilst seismic techniques will 
be used to monitor reservoir conformance, marine based monitoring will be required to provide additional assurance 
that storage is robust and environmental impacts low. The use of numerical marine system models provides a 
mechanism by which impacts can be assessed and monitoring strategies designed whilst minimising cost [2]–[6]. [3] 
and [2] have investigated approaches to monitoring CO2 based on the optimal deployment of limited available 
instrumentation, considering the sensitivity of those instruments to changes in a number of parameters (particle 
density, CO2 concentration). Here we extend this approach using a method more commonly used for identifying 
optimal sampling strategies for large ocean basins [7]. 

2. Hydrodynamic Modelling 

The Finite Volume Community Ocean Model (FVCOM) [8] has been coupled with the biogeochemical European 
Regional Seas Ecosystem Model (ERSEM) [9] through the Framework for Aquatic Biogeochemical Models 
(FABM) coupler [10] to provide a fully coupled 3D time evolving simulation capability that includes hydrodynamic, 
carbonate chemistry and biologically driven biogeochemical processes [11]. A fully-forced hydrodynamic model 
provides the setting for modelling sub-sea CO2 reservoir release scenarios. Atmospheric forcing is supplied from a 
custom Weather Research and Forecasting (WRF) [12], [13] model. This model system can therefore simulate the 
chemical signature of a range of hypothetical leakage scenarios within the context of natural variability of the 
system. This combination is crucial as the key challenge is to distinguish anomalous signals from what can be 
considerable natural variability. 

 
The large shelf model domain in Figure 1a is driven at its boundary by a predicted sea surface elevation time 

series derived from 11 tidal constituents (M2, S2, N2, K2, K1, O1, P1, Q1, M4, MS4, MN4)  from the TPXO data set 
[14]–[16]. In order to accurately model the carbonate system in ERSEM, depth-resolved temperature, salinity and 
non-tidal velocity inputs are sourced from the 1⁄15×1⁄10° north-west European continental shelf operational Forecast 
Ocean Assimilation Model (FOAM) and interpolated onto the FVCOM open boundary nodes. A nested Weather 
Research and Forecasting (WRF) model [12], [13] of the model domain supplies surface wind, heating and 

Figure 1 a) FVCOM domain used in which resolution varies from 15 km at the open boundaries to 0.5 km at the release site. The black box 
indicates the extents of the grid shown in (b). b) The nested domain with resolution from 0.5 km at the boundary to 3 m at the release site (red 
star). The black box in (b) indicates the extent of the Goldeneye complex 
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precipitation. Sea surface temperature is nudged to remotely sensed SST in FVCOM from the Group for High 
Resolution Sea Surface Temperature (GHRSST) Level 4 G1SST Global Foundation Sea Surface Temperature 
Analysis daily data [17]. Although the unstructured grid of FVCOM allows for increases in resolution in areas of 
interest, FVCOM also incorporates a nesting module with which smaller FVCOM models can be run using the 
outputs of a larger domain. The target region for the modelling described here is the Goldeneye complex in the 
northern North Sea (Figure 1b) which is implemented as a nested grid forced by boundary conditions from the larger 
grid (Figure 1a). The nested grid resolution varies from 0.5km at its boundaries to 3m at the release location.  

 
The CO2 release is modelled in FVCOM-FABM-ERSEM as a flux from the seabed into the bottom element 

where it is subject to the advection and diffusion calculated by FVCOM. The bottom element at which the CO2 is 
released has a volume of 39-40 m3 depending on the state of the tide. Release scenarios are designed to encompass 
the range of hypothetical potential releases for CCS sites in the North Sea (Table 1). To simulate a non-catastrophic 
failure of the CCS storage (since a large instantaneous release is more readily identifiable), the initial release is 
tapered with a hyperbolic tangent over a period of a day until the maximum release rate is attained, after which the 
rate remains constant for the remainder of the model run. The model pH outputs as an indicator of CO2 concentration 
are used as a test dataset to generate a monitoring network.  

Table 1 CO2 release scenarios 

CO2 (t d-1) CO2 (mmol m-2 s-1) 

3 91.1 

30 911.4 

300 9114.1 

3000 91140.6 

3. Sampling strategy 

The sampling strategy employed here is a development of the technique developed for the OPEC project [7], [18]. 
The OPEC method investigates monitoring in terms of the spatial distribution of sampling points required to capture 
some threshold of the signal being monitored to enable the design of an optimal monitoring network, which may 
include realistic constraints such as a limited number of sensors. This important caveat can have significant 
associated cost savings compared with less optimal sampling designs.  

 
In the OPEC tool, an initially regular sampling grid is overlaid on the model grid with a specified sampling radius 

with staggered alternate rows to maximise coverage for each location. Within each radius at each regular grid 
position, the model grid closest to each position in the uniform grid is identified and used as a base time series 
against which all remaining nodes in the model domain are compared. A range of statistics is able to be calculated 
(root mean square error, standard deviation, correlation coefficient, variance etc.) to calculate what percentage of the 
model time series inside the radius for the regular sampling position can explain the variability seen compared with 
the base time series. Based on the statistical values at each regular grid sampling location, those with similar values 
are merged to form regions of the domain where the properties of the water are similar and which can then be 
sampled with a single time series. 
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This method was designed with remote sensing and 
regularly gridded model results in mind and is less 
well suited to outputs from an unstructured grid model 
such as FVCOM. As such, it has had to be modified 
for use with FVCOM. As with the OPEC approach, a 
regularly spaced grid is overlaid on the model grid 
and the closest model node to each regular position is 
used as the base time series. Rather than comparing 
only those positions which fall inside a pre-defined 
radius, each base time series is compared against all 
other nodes in the model grid starting with those 
closest to the base time series location and moving 
away. The radius of similarity for the time series at 
each of the remaining model nodes is instead 
computed dynamically based on a threshold statistical 
value. The approach described here uses the Pearson 
correlation coefficient of the base time series and the 
other time series in the model domain with a threshold 
of 0.5. Once the correlation coefficient decreases 
below the threshold, the analysis flags the remaining 
nodes as outside the radius of similarity. This 
approach means that each position in the regular grid 
has a radius of similarity which is dependent on the 
base time series. However, the result produces a large 
number of overlapping regions.  

 
A greedy set algorithm [19] is able to identify the 

smallest number of sampling locations which provide 
the largest set of nodes. Whilst this approach is 
suitable for a regularly gridded model, the 
unstructured nature of FVCOM means that a greedy 
set algorithm would generally favour regions of 
higher resolution. A weighted greedy set algorithm 
[19] uses a weight to modify the behaviour by 
selecting the set of similarity radiuses at the regular 
grid positions which minimises the total weights. In 
this instance, the weights are a combination of the 
distance from the Goldeneye complex (black box in 
Figure 1b) and the coverage of each region. In this 
manner, a monitoring network can be designed which 
will provide the maximum likelihood of identifying a 
sub-sea release of CO2 into the water column (Figure 
2). The number of locations is artificially restricted to 
six to mimic a finite number of in situ sensors to yield 
an optimal sampling strategy (Figure 3). 

 
 

Figure 2 The results of the weighted greedy set algorithm applied to the 
regions for all the locations in the initial uniform grid. Each coloured 
polygon represents the coverage of the correspondingly coloured dot. 

Figure 3 Coverage of similar water properties for the given domain for a 
limited number of sites for a finite number of sampling stations from the 
results in Figure 2). 
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4. Sampling validation 

Although it is tempting to assume a complex 
method for identifying optimal sampling must be 
better than a simple approach, it is important to ensure 
this is the case, especially given the potential real costs 
associated with monitoring in ocean environments.  

 
To validate the weighted greedy set approach to 

designing optimal monitoring networks in Figure 3, a 
simpler uniform distribution of the same number of 
sampling stations was generated for the Goldeneye 
complex (Figure 4). Time series of the difference in 
pH between a no release run and the 30 t d-1 release at 
the relevant sampling stations are shown in Figure 5.  

 
Using the first deviation from baseline in pH, the 

regular sampling network is able to identify a signal 
from the released CO2 on 2015-01-02 17:00:00. For 
the weighted greedy set network, the first non-zero 
value occurs at 2015-01-02 10:00:00, 7 hours earlier. 
Whilst a non-zero ΔpH is technically identifiable, in 
reality, the variability in the natural system means that 
such small thresholds are impractical for monitoring 
purposes [20]. What the weighted greedy set 
monitoring network also shows is a greater magnitude of signal: the top panel in Figure 5 shows the weighted greedy 
set ΔpH for the 30 t d-1 release where pH drops relative to the no release scenario are of the order 0.0004; in contrast, 
the pH drops in the lower panel in Figure 5 for the regular sampling are of order 0.0001, four times lower. These 
changes are two orders of magnitude lower than detection thresholds of current sensors, indicating larger impacts 
from the released CO2 are confined to a radius of fewer than 5km. 

Figure 5 Comparison of time series of ΔpH from the weighted greedy set (Figure 3) and regular approaches (Figure 4) for a 300 t d-1 release to 
compare a simpler and more complex sampling approach. The dashed black vertical line indicates the start of the release and the dotted blue 
vertical line the time at which the release is first encountered by a sampling station. 

Figure 4 Regular sampling stations (red dots) within the Goldeneye 
complex (black box) to illustrate a simpler sampling strategy with the same 
number of stations as the optimised approach (Figure 3). 
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5. Conclusions 

Effective monitoring of CCS is required to ensure the integrity of the reservoir and thus the long term CO2 
storage. The monitoring which is put in place must include geological (both consolidated and unconsolidated 
sediments) and water column monitoring at the very least, and monitoring water column chemistry is a critical part 
of a baseline monitoring strategy. Critical to effective monitoring is an optimal sampling strategy, one which is 
cognisant of the cost of such operations but also of the importance of timely detection. 

 
We present the application of a monitoring tool which extends an existing in situ sensor network design tool [7], 

[18]. Based on a uniform grid, pH time series correlation coefficients at the model grid nodes closest to the regular 
grid positions and all the nodes in the model domain are calculated. Those which fall within a given threshold 
coefficient are grouped to identify regions of similar properties. The weighted greedy set algorithm then groups these 
sets of model nodes in combination with a weighting (the distance outside the Goldeneye complex and the coverage 
of each region of similarity at each regular grid position). This provides an optimal sampling strategy with no 
limitations on the number of sampling stations; the weighted greedy set algorithm merely aims to maximise 
coverage whilst minimising the number of sampling stations required.  

 
To replicate more real-world limitations, where cost per sampling station is a valid criterion, a limited number of 

sampling stations are extracted from the weighted greedy set algorithm results to design a pragmatic monitoring 
network. The changes in pH from the pragmatic network are compared with those from a simple sampling strategy 
and show that the weighted greedy set positions are able to both identify releases sooner and produce stronger 
signals in ΔpH over the duration of the CO2 release. Previous work has shown that the sensitivity to changes in pH is 
strongly correlated with the likelihood of a true positive release identification [20], so optimising the sampling 
locations to maximise the potential changes in observed pH increases the chances of identifying a release correctly. 

 
The weighted greedy set algorithm is shown to be able to design monitoring networks for tracers released from 

point sources in tidally dominated coastal seas. Its application, however, is not limited to such environments since 
the analysis is performed on model outputs. The algorithm is implemented to show how a monitoring network can be 
designed which improves release detection timelines compared with a simpler scheme. 
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Abstract 

This paper reports the development of a multi-scale, multi-phase modules for bubble plume dynamics within the FVCOM 
numerical model to investigate the fate of CO2 leakage into the water column from potential carbon storage sites. The model is 
capable of analysing the fluid dynamics, dissolution and leakage impacts, including seawater pH and pCO2 changes, at scales 
ranging from the leakage site in the order of meters, up to the regional and coastal ocean scale in the order of thousands of kilometres 
for a wide range of leakage scenarios, from bubbly seeps to well blowouts. The developed model is tested to predict the fate of 
leakage of CO2 from the Goldeneye area of the North Sea, a potential site for CO2 storage. Results show that the bubble modules 
are successfully coupled with the ocean model and predicted, from 3 leakage ports within a 5x5 m2 area at a rate of 0.3 Tons/day, 
the maximum increases of concentration of dissolved CO2 (DIC) reaches to 0.03kg/m3 at the leakage sites within an area of 2.5 
km2, with DIC increases of 0.01 kg/m3 at a leakage time of 5 hours. The CO2 bubble plume reaches to a steady state at the height 
of 13 m and moves with the ocean current horizontally within a 2.2 m in diameter. The DIC plume then further develops to an area 
of 93 km2 within one day and circulates periodically around the leakage site with the tidal currents. 
Keywords: FVCOM Numerical Model; Multi-Phase Flow; Plume Dynamics; CO2 Bubble Dynamics; Carbon Capture and Storage; 

1. Introduction 

To reduce greenhouse gas levels in the atmosphere and to mitigate anthropogenic carbon dioxide (CO2) emissions, 
Carbon dioxide Capture and Storage (CCS) has been identified as a vital component, removing CO2 from large 
emission sources such as fossil fuel burning power stations and disposing of it in storage sites and geological 
formations deep underground on or offshore. A large concern in offshore CCS is the ability of the storage reservoirs 
to retain the CO2, and preventing any risk of leakage traveling through the geoformations into the water column and 
atmosphere. Another issue is the lack of studies into the impacts a leak would have on local and coastal marine 
ecosystems; requiring development of new monitoring techniques, testing in low risk in-situ experiments, and utilising 
modelling techniques to best define monitoring strategies, determine the impact of leakage, and upscaling from the 
small-scale experiments to full scale analysis. Without significant realistic analogues, modelling systems are the only 
method of characterising the diverse “hypothetical” release events that can occur through sediments and into the water 
column [1]. 
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A two-phase regional ocean model is developed aiming to predict, under a range of leakage and seasonal conditions, 
the CO2 bubble/droplet plume developments coupled with the chemistry and dispersion of the dissolved CO2 solution, 
along with the subsequent impacts in terms of changes in pCO2 or pH from baseline measurements on ocean 
physicochemical environments. 

Existing regional leakage models have a number of shortcomings beyond that of the lack of in-situ experimental 
data required to test and calibrate the modelling systems. There are shortfalls of modelling the multi-phase flows that 
aim to predict leakages from gas bubbles and liquid droplets, with/without hydrate formations; along with low depth, 
dissolving, bubbly flow in CO2 leakage scenarios [2]. Further to this, looking at wider impact zones also requires 
analysis in multiple scales, investigating the local impacts in the order of meters and larger scale impacts in the order 
of tens of kilometres. Except for the structured mesh models by Sato et al. [3], [4], there are a lack of nested modelling 
systems developed allowing data transfer between these different scales.  

Typical oceanic shelf models have resticted horizontal resolutions, either in the order of 10km or larger, that, 
clearly, is unable to predict the impacts of the near leakage plumes that are in an order of magnitude smaller [5]. 
Therfore, there has always been treatement to de-couple these models from those of the fine scale providing bubble 
plumes in the order of meters. To investigate the fate of CO2 leakage into the water column in the local environment 
(meters) to oceanic scale (thousand kilometres), the small scale impacts of the bubble plume are required, giving the 
plume rise height, rate of dissolution, distribution and concentration of the dissolved solution [6-9]. On the other hand, 
the small scale impacts are affected greatly by oceanic tides, currents and ocean turbulence cascaded from those 
generated in the global and coastal scales. Therefore, a new numerical modelling system requires to be developed to 
fit these gaps.  

2. FVCOM Leakage Plume Module  

In this study, a multi-scale and multi-phase prediction module is developed based on the Unstructured Grid Finite 
Volume Community Ocean Model (FVCOM) [10] for predictions of the fate of CO2 leakage into the ocean. The 
model aims of coupling the hydrodynamics and mixing phenomena from the oceanic scale, with the bubble dynamics 
and the multi-phase physicochemistry in the ultra-fine scale, including analysis of leakage impacts and fluid dynamics 
ranging from leakage site (m - km) up to the regional and coastal scale (103 km) in the North Sea, as shown on the top 
of Figure 1 (a). The model is designed initially for the North Sea, where it has been considered to store carbon in the 
undersea bed oil and gas reservoirs, utilising grid system and regional boundary forcing data from the Scottish Shelf 
Model [11]. The model is capable of simulating the CO2 plumes from multiple leakage sites, which may move within 
the North Sea. It should be noted that the methodology and the model system are not limited to the North Sea, but can 
be applied to other regional oceans and global ocean as required. 
 
 

Fig. 1. The developed multi-scale, multi-phase numerical model, a). with forcing down from global scale data (the top left); into the coastal 
scale in the SSM (top middle shows the mesh, bottom left shows sample currents); with a nested ghost model reducing the scale to the 
meters (top left showing the mesh, bottom middle shows the flow of dissolved CO2 solution); including an example CO2 leakage plume 
module (bottom left, providing CO2 bubble plumes rising and dissolving in the water column (shown in terms of bubble size – mm), and 
flow of dissolved CO2 solution in the water column (shown in terms of dissolved mass concentration). b). the unstructured grid around 
the CO2 leakage sites, where the black area reduces to a grid size of 1.0m x 1.0m.   

(a)         (b) 
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As the particle tracking module build into FVCOM only allows movements with the water column [10], a new 
module is developed to cover the rising and dissolving gas dynamics and their impact on the water column dynamics. 
This is achieved through developing a module that links the individual bubble model from Chen et al. [6] to FVCOM 
in a two-way coupling scheme that not only solves the bubble dynamics, but provides source terms for changes in 
mass, momentum and Dissolved Inorganic Carbon (DIC) in the water column, from which the further developments 
of the CO2 solution can be simulated up to the regional ocean model [12]. The module is developed through a 
Lagrangian-Eulerian approach, where the dynamics of the leaked CO2 are modelled by the Lagrangian scheme that 
interacts with the turbulent ocean, modelled by the Eulerian scheme, through two-way coupling of mass and 
momentum. Therefore, in addition to the dynamic models of CO2 bubble interactions with the water, a high level of 
modification has been made in FVCOM’s coding and design to allow multi-phase flow for gas leakage. Further details 
of the CO2 bubble/droplet models, parameters and their respective values and correlations are found in Chen et al. [6].  

3. Model Test Set up  

The developed model is tested, setting the leakage of CO2 at a rate of 0.3 tons/day from 3 leakage ports within 5x5 
m2 of sea floor at near the Golden Eye platform in the North Sea at a depth of 126m, refer to the top part of Figure 1 
(a). The unstructured grid system has the fine mesh sizes of 1.0m x1.0 m horizontally and 2.0m vertically at CO2 
leakage ports area as shown in Fig 1 (b). The simulation is performed for a test case of 7 days leakage of CO2. The 
bubble plumes and the development of the CO2 solution distribution within this period are examined to demonstrate 
how the model works. The code was running using a 16 core workstation.   Results and Discussion 

The leaked bubbles fully dissolve within 15 meters height from the seafloor at an initial size of 2 ~ 12 mm in 
diameter randomly leaked from sediment pockmarks. This indicates a dissolution rate of ~0.64 mm/s in diameter. No 
significant horizontal movements, but about 2.0 m in diameter around the leakage pockmarks, of the bubble plume 
have been observed due to the relatively larger velocity ratio of bubble rising (ub ~ 12 cm/s) to that of current at the 
bottom boundary layer (uc ~ 1.0 cm/s).  

The CO2 enriched seawater (or the dissolved inorganic carbon, DIC) plume developed by the flow of the ocean 
current, are demonstrated within the domain of 27.1 km (East to West) and 13.5 km (north to south) centred at the 
leakage pockmarks in the first grid from sea floor. The results of CO2 enriched water plume shown by the CO2 
concentration normalized by the maximum concentration of 0.03kg/m3 are presented in Figure 2 at 8 different leakage 
times.   

 

Fig. 2. The developments of CO2 enriched seawater plume within an area of 27.1 km x 13.5km centred to the leakage pockmarks in the first 
grid from sea floor at a series of times and the scale bar can be used as reference for the dissolved CO2 concentration normalized by the 
maximum value of 0.03 kg/m3. 

The CO2 enriched water plume reaches the maximum concentration (0.03 kg/m3) within 5.0 hours at the leakage 
sites from the horizontal dispersion though flow of the seawater. The oceanic currents within the leakage period is, in 
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general, towards the North-East (can be seen from the plume of 4.2 day in Fig. 2), however this circulates with the 
tidal frequency. The development of the plume of this circulation can be found from the snapshots taken at 20 hr, 1.2 
days, to 6.3 days. As such, when the current turns to the South-West, the DIC at the North-East side of the leakage 
site is transferred past the leakage site, creating a temporal relatively larger area of high DIC concentration, as shown 
in the snapshots at 1.2 day, 3.5 day and 6.3 day in Fig 2. The area of the CO2 enriched water with concentrations larger 
than 0.01 kg/m3 is less than 2.5 km2 through to the end of the simulation on day 7.     

 
It has to be mentioned that the results discussed in this paper are from early preliminary analysis on the data 

obtained from the simulation. The aim is to demonstrate how the developed model works. The details on the structure 
and the dynamics of bubble plume and the CO2 enriched water plume will be reported when the data from the 
simulations are analysed in the following papers.     

4. Conclusion  

A multiscale and multiphase regional ocean model is developed on the basis of the Unstructured Grid Finite 
Volume Community Ocean Model (FVCOM) [10] for predictions of the fate of CO2 leakage into the ocean. The test 
simulation shows that the model is capable to simulate the interactions between the leaked bubbles with turbulent 
ocean to predict the potential impacts of leaked CO2 on ocean. The model will be developed to simulate the leakage 
plume dynamics from CO2, CH4, and oil transportation pipelines.      
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Abstract

The use of machine learning techniques to identify CO2 seeps to marine waters is assessed. These techniques require
a large amount of data for training, here obtained through model predictions on how CO 2 seeps behave in the water
column. Goldeneye, off the coast of Scotland, has been used as area of study. It is shown that Convolutional Neural
Networks (CNN) are able to, with high confidence, to classify time series from the model simulations into leak and
no-leak situations. CNN in data analysis can increase the detectability of CO2  seeps, and thus the optimization of
sensor deployment and monitoring design. 
  
Keywords: Convolutional neural networks, Time series classification, CO2 leak detection, Goldeneye, CCS, Marine 
Monitoring

1. Introduction

Carbon, Capture and Storage (CCS) projects will be designed to keep the stored CO2 within the intended formations,
and the injection wells and the formation will be monitored by standard technologies to assure detection of unexpec-
ted events [1]. However, due to the large amount of CO2 that needs to be stored and, as a consequence, the large area
needed to be monitored, there is always that CO2 may migrate toward the sea floor undetected. As a precaution, the 
marine environment will have to be monitored for indications of a leak, we argue that monitoring of the surface are 
necessary in order to compile with the regulations1.

The marine component of the monitoring program assures that a storage project can coexist with other offshore ac-
tivities, and the associated environmental monitoring can be beneficial for other purposes. For instance, tools are un-
der development for assessing the total environmental stress imposed on the oceans, e.g. Cumulative Effects Assess-
ments (CEA), in view of Marine Spatial Planning and ecosystem services framework [2-4], and a potential stress 

1 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0031&from=EN
-----
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added from CO2 storage projects need to be documented. The marine monitoring program also assures against un-
justified accusations for having adverse environmental effects [5], but will impose additional costs and challenges to
the storage project [6-8]. 

Environmental changes, e.g. changes in bottom fauna or in the pelagic ecosystem [9, 10], detection of bubbles from 
ship sonars [15, 16], or elevated concentration of dissolved gases [11-15], can be used as indicators of marine gas re-
leases. However, the real challenge is the high variability of the marine environment, both in current conditions [16] 
and in biochemical activities [11, 17].

Monitoring an unsteady marine environment for changes in variables that are a naturally present is a classification
problem, we need to classify data streams into seep/no-seep situations. A false positive, i.e. indications of a leak that
is not there, can become costly, the monitoring program will enter the locating and confirmation mode, but also false
negatives (i.e. undetected seeps) may impose undetected additional stress to the environment. 

Machine learning techniques are well suited to classify data streams collected from sensory systems that are 
ubiquitous today. Recently we have seen efforts for finding better techniques for identifying anomalies in pH by 
look at the difference between lags for the purpose of detecting anomalies and thus potential CO2 leakages [18]. 
 
The learning process for the machine learning technique will require time series for both situations, i.e. time series 
of the variables in question for no-seep and seep conditions. The no leak situation represents natural environmental 
statistics, i.e. the baseline. These statistics must be based on in-situ measurements, preferably supplemented with 
model simulations [19]. Time series for the seep situations must rely on process modelling, simulating the different 
processes involved during a seep [13, 20], preferably supported by in-situ and laboratory experiments [14].

In anticipation of real experimental data, this study is based on simulations from the Finite-Volume Coastal Ocean 
Model (FVCOM) [21] coupled with European Regional Seas Ecosystem Model (ERSEM) [22]. Data at the 
Goldeneye site have been extracted from the regional model. Different scenarios have been created in a statistically 
sound manner to train the network. Other model results have subsequently been used to test the network. This study 
is a part of our preparation for the large-scale field study planned at Goldeneye in 2019 within the STEMM-CCS 
project (http://www.stemm-ccs.eu).

2. Time series classification

Monitoring of  a  CCS storage site  will  provide sensory time series  from fixed installations on the seabed.  The
challenge is to classify these time series into a leak or no leak class. We define a time series x as follows:

where m is the number of observations in the time series, and xi
(j) is the value at time i. An instance is a pair {x(j),

y(j)}, where y(j)
i is a discrete class variable which is a categorical value in C where C  . A dataset with N instances

is denoted, D = {X(j), y(j)} where j=1,2,...,N, X(j) is a set of j time series and y(j)  is a the corresponding class variable
for the jth time series. The dataset D is split into a training and test dataset DV = {X(1,...,j-m), y1,...,j-m)} and DT = {X(j-m,...,j),
y(j-m,...,j)}, respectively, where m represents the number of instances included in the training dataset, and N-m  the test
dataset. The time series classification problem consists of constructing a model based on the training dataset  DV,
with the ability to predict a class label y(j)  C given the input instances DT. 

Time series classification have been dominated by two different approaches, namely distance and feature based 
methods. Distance based methods takes untreated time series and exploits the fact that time series within a class can 
be interpreted as observations that arise from an underlying process. These methods depend on calculating the 
distance, or similarity, between unprocessed time series, and combine them with a classifier, e.g. k-nearest-
neighbour (k-NN). Dynamic Time Warping (DTW) and Euclidean Distance (ED) are typically methods for 
calculating metrics for distances between time series. DTW seems to be the most successful distance based method, 
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as it allows for perturbations, shifts, variations and in the temporal domain [23, 24]. 

Feature based methods withdraw features from the time series and use traditional classification methods based on 
the extracted features. As an example, Bag-of-Words models, where countenance of the features extracted from the 
time series are feed to a classifier, have been extensively used in time series classification [25]. Recently, several 
efforts have used Artificial Neural Networks (ANN) for time series classification [16, 17]. Here we investigate how 
Convolutional Neural Networks (CNN) performs to the task of classify time series in the context of CO2 leak 
detection. 

3. Models and Simulations

The simulations used in this study are performed with FVCOM [21], coupled via FABM (Framework for Aquatic
Biogeochemical Model)  [26] with the ERSEM  [22] model, thus  enabling complex biogeochemical models to be
developed as sets of stand-alone, process-specific modules. In these numerical simulations, ERSEM is run with only
the carbonate system parameters enabled. Several simulations are performed, with and without CO2 seeps present.
We are studying the Goldeneye area in the North Sea and the simulations used are summarized in Table 1. The North
West Europe model is run over a two-year period, while the model of the Goldeneye area is run for approximately
14 days. The North West Europe model is used as initial conditions and forcing for the Goldeneye set up. Model
parameters for these simulations are shown in Table 1.

Table 1: Simulations used in the study with descriptions and key figures

Simulations Description Grid/Area Size/Node/Grid

North-west-Europe A large model is run for North-
west Europe for 2015 and 2016. 
Data from the model is used as 
initial conditions and forcing for 
the model on the Goldeneye region

Only physical model run. 
Include wind forcing. 
FVCOM

 

No Leak – Baseline
simulation

Training dataset, no-leakage 
simulation with FVCOM and 
ERSEM including the Carbonate 
system at the Goldeneye region.

Physical and carbonate 
system, FVCOM ver4.0- 
ERSEM with nesting, 

24 horizontal layers, 1736,  
nodes, 3357 Triangles, 
1345 time steps with 15 
minutes interval, 100x100 
km area, 

Goldeneye area, 
Small leak 
simulation (30T) 

Training dataset, Small leak (30 
Ton CO2 per day) simulation with 
FVCOM and ERSEM including 
the Carbonate system at the  
Goldeneye region.

Physical and carbonate 
system, FVCOM ver4.0- 
ERSEM with nesting, 

24 horizontal layers, 1736,  
nodes, 3357 Triangles, 
1345 time steps with 15 
minutes interval, 100x100 
km area, 

Goldeneye area, 
Large leak 
simulation (3000T) 

Training dataset, Large leak 
(3000 Ton CO2 per day) 
simulation with FVCOM and 
ERSEM including the Carbonate 
system at the Goldeneye region.

Physical and carbonate 
system, FVCOM ver4.0- 
ERSEM with nesting, 

24 horizontal layers, 1736,  
nodes, 3357 Triangles, 
1345 time steps with 15 
minutes interval, 100x100 
km area, 

Goldeneye area, 
Medium leak 
simulation (300T) 

Test dataset, Medium leak (300 
Ton CO2 per day) simulation with 
FVCOM and ERSEM including 
the Carbonate system at the  
Goldeneye region.

Physical and carbonate 
system, FVCOM ver4.0- 
ERSEM with nesting, 

24 horizontal layers, 1736,  
nodes, 3357 Triangles, 
1345 time steps with 15 
minutes interval, 100x100 
km area, 
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4. Data Pre-processing

In the real-world information collected are in general incomplete, are often boisterous, lacking attributes and 
consists of false values and errors, include outliers and have incorporated inconsistencies. Data pre-processing is the 
task of preparing data before it is feed to a machine learning algorithm, that aim to facilitate and optimize the 
accuracy of the algorithm.

The pre-processing can be divided into two main tasks, data preparation and data reduction, with associated 
subtasks. Preparation of data includes among others, data cleaning, data integration, data normalization and 
transformation, as well as missing data imputation. Instance selection, data discretization, feature selection and 
feature construction are part of the data reduction process. The most important aspects of the data pre-processing 
steps are described in [27] and [28].

Since we use gridded data from numerical simulations, which often are uniform and regular, many of the steps in the
data pre-processing stage described in [28] are unnecessary. The main pre-processing step for this particular data is 
the cleaning step, i.e. removing time series that do not contain traces of the leakage and to transform them with 
simple techniques such as normalization or standardization [29]. Here we first compared and subtracted the baseline 
simulation from the leak simulations and generated a footprint of the leakage (See Figure 2). Secondly, we clean the 
dataset by only label time series as leak above a threshold, here we use the maximum value of the concentration of 1
(mmol C/m3). Thirdly, we standardized [30] the training data and test data separately. The training data is then fed to
the neural network while we leave out the test dataset for validation of the model.

5. Method: Artificial Neural Networks (ANN)

An ANN consists of a finite number of inputs and outputs, neurons, connections between neurons, the influence of
the connections, i.e. weights, a propagation function and a learning rule. An artificial neuron, here denoted g, is the
mathematical function that computes a weighted sum of its inputs signals, xi, i=1,…,n and generate output based on
the, linear or non-linear, activation function K [15], 

,

w is the coefficients or weights of the, while b is the bias. One of the most commonly used activation functions has
been the sigmoid function (logistic function), recently variants of the Rectified Linear Unit (ReLu) have become
popular [31]. The artificial neurons are organized in layers and the output of the neurons in one layer are connected
to the input of the next layer. The process of updating and optimizing the weights and thresholds in the artificial
neural network is called the learning process. For this optimization task we need to define a cost or loss function that
typically is a measure of the true value against the predicted estimate, i.e. mean squared error, hinge loss or cross
entropy  [30]. This optimization task is usually solved by gradient-decent-methods such as backpropagation  [32].
CNN have been successful in many applications such as image recognition  [33], video analysis  [34] and natural
language processing [35]. 

5.1. Convolutional Neural Networks

CNNs utilize the grid structures in the data to be analysed, i.e. in 1-D the regular sampling in time series data, or in
2-D the fixed structure of pixels in an image and use convolutions instead of matrix multiplication in at least one of
its layers. The convolution operation is defined as the function s(t) such that:
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where  x(a) is an observation or input, and  w(a) is a weighting function. The convolution operation will typically
generate a less noisy dataset  s(t), as the observations  x(a) will be averaged with the weighting function w(t). The
output of a convolution operation is often referred to as the feature map, while the function w is called the kernel. 

Normally implementations of  CNNs do not actually  use regular  convolution,  use but  instead  cross  correlation.
Cross-correlation  and  convolutions are  very  alike,  and  the  major  difference  in  definition is  that  the  weighting
function w(t-a) is altered to w(t+a).   During a convolution operation we have to flip either the input or the kernel,
while this is not necessary in the cross-correlation operation. Optimization will lead to the same final results with
both  methods and  thus,  by using cross-correlation,  simpler  implementation  of  the  CNN is  possible.  The main
reasons  for  using  convolutions  in  neural  networks  are; sparse  interactions,  parameter  sharing  and  equivariant
representation [30, 36].  

Sparse interactions are a consequence of the convolutional operation and occur when the kernel w is smaller than the
input x, i.e. interactions between layers in the CNN are limited by the kernel size [30]. For instance, in a time series
setting it is with the convolution possible to detect meaningful and small features that occur only in a fraction of the
original  time series.  The convolution operation enables for parameter  sharing in the network,  which in essence
reduce  the  parameters  of  the  model  and  thus  reduces  memory  requirements  and  improves  the  quality  of  the
model/estimator [30]. The convolutional operation is equivariance to translation [30], which means that a translation
of input features results in an equivalent translation of output.  For time series, the convolution generates a record of
when different features appear, and the feature will be represented similarly regardless of where it appears. This is
particular good property for CO2 leak detection, it does not matter when the feature occurs. A great benefit with the
convolutional  neural  networks  is  the  fact  that  they  utilize  spatial  or  temporal  relationships  to  reduce  learning
requirements [37].

The architecture of a fully CNN consists in general  of three important steps that are repeated;  the convolution
operation, a non-linear transformation via the activation function and a pooling operation. The convolution enables
for detection of feature on a smaller scale, the non-linear activation ensures that non-linear relationships in the data
are accounted for and the pooling operation reduce overfitting, the spatial size and the number of parameters in the
network.  Dropout is  applied after  the last convolutional layer  and it  is  a regularization method which removes
features in the network [38] with the intent of reduce overfitting. Stochastic gradient-decent-method Adam [39] is
used as optimization method. Table 2 shows the most important aspects of the neural networks used here.

We use the two simulations with 30T and 3000T as training dataset. The 300T simulation is used to verify the neural
network by predicting both false-positive rate and probability for detection. Table 3 shows an overview of the layers,
shape of the layers and parameters. In total there are 72 986 trainable parameter in the neural network. 

Table 2: The most important aspects of the architecture of the neural network used in the study.

Architecture Description

Pre-processing Cleaning and standardization of data 

Input data 1-D time series of length 1345, time step 15 minutes 

Samples/Instances 83328

Test split 33 %  

Validation split 33 %

Validation dataset (leak/no-leak ratio) 17 %
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Prediction dataset (leak/no-leak ratio) 24 % 

Layers All convolutional layers, 3 in total

Activation function ReLu for all CNN layers

Pooling Max-pooling after each CNN layer

Regularization Drop-out (60 %)

Loss function Binary cross-entropy [3]

Optimizer Stochastic Gradient decent – Adam [3, 42]

Output Binary,  Softmax [3] activation function 

Table 3: Overview of parameters to be optimized in the CNN. 

Layer Output of Layer (shape) Parameter figures Parameters in total

Convolution - 1 (None, 1344, 24) Filters: 24, Kernel size: 2 72

Max pooling - 1 (None, 672, 24) Pool size: 2, Strides: 2 0

Convolution - 2 (None, 669, 48) Filters: 48, Kernel size: 4 4656

Max pooling - 2 (None, 334, 48) Pool size: 2, Strides: 2 0

Convolution - 3 (None, 327, 96) Filters: 96, Kernel size: 8 36960

Max pooling - 3 (None, 163, 96) Pool size: 2, Strides: 2 0

Flatten - 5 (None, 15648) - 0

Dropout 6 (None, 15648) Dropout rate: 0.6 0

Dense 7 (None, 2) - 31298
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6. Results

Figure 1 shows the validation and test loss, and validation and test accuracy, from the trained convolutional neural
network model. The training dataset is the majority of the data available, and it is used to update the weights or
parameters in the model. The validation dataset is used to tune the hyperparameters of the network, while the test
dataset is independent of the training data and used to verify that the fitting of the model is robust. When both the
training and test dataset fits the model, it is a good indication of minimal overfitting. We have used the cross entropy
as loss function and the model convergence towards a validation loss close to zero and a test loss around 0.025. Test
loss is expected to have a higher loss than validation, because in the test phase the model encounters “new” time
series. 

We observe that both the test and validation loss convergence, indicating that the model is not overfitted. Further,
this indicates that the network is able to construct features with distinctiveness for each class, that allows for good
classification. The classification is dependent on how the data have been cleaned. A high threshold for what time
series to include in the training dataset will result in strong classification probability, with low false-positives. The
drawback is that the classifier, by excluding the time series with lower threshold, do not capture the nuances that can
be important to classify weaker signals, hence the probability for detecting a leakage decrease. A lower threshold
will increase the false-positive rate since time series from both classes are getting more equal to each other.

Figure 1: Left panel: Validation loss and test loss. The loss used in this analysis is cross entropy. Right panel: 
Validation accuracy and test accuracy. 
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Figure 2 shows the actual footprint due to a leakage of size 300 Tonnes per day in the centre of the domain. The
difference between the concentration from the leakage, and the same model run without leakage is calculated and
plotted to the left. This is what we refer to as the footprint of the leakage. The time series that are feed to the CNN
include background variability as shown in the left panel.  

The rate of false positives for the non-leak time series fed to the network is given in the left panel of Figure 3. The
corresponding rate of correct positives, i.e., the detection of a 300 T/d leak, is shown in the right panel of Figure 3.
Although the simulations and data used for training the neural network have been limited, we see that the area of
detectability are relatively large, when compared against the footprint on the right panel in Figure 2. Figure 3 shows
the false-positive-rate of the model on the seabed. Here we have fed the model only time series that do not contain
leakages, and obsereve how the model classifies between leak and no-leak.  With limited data available and minimal
optimization of  other  parameters  than the weights,  theses  initial  results gives a  good indication that  CNN is a
suitable method for classifying time series that arise in a typical CO2 monitoring setting.  

      

Figure 2: Left Panel: Mean value of CO2 concentration of the 300T simulation with background variability. 
Right panel:  Maximum value of the concentration in each triangle of the footprint, i.e. the difference 
between a leak and no-leak situation. Here we have used 1 mmol C/m3 when cleaning the data, i.e. only time 
series that are above a threshold of 1 mmol C/m3 are labeled as a leak.
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7. Discussion

This small test of using convolutional neural networks in time series classification of CO2 seepage signals shows
promising results. We observe that the model converges and are able to distinguish time series between leak and no-
leak class. Due to the limited amount of data and relatively low variability, results should be viewed with care. Thus,
we need to investigate further how these methods work on more complex model runs and with real data where the
variability and complexity is higher. New simulations with more variability are under development. There are many
ways  of  improving  the  results,  expanding  the  network  and  optimizing  hyperparameters  are  two obvious  ways
forward.  
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Figure 3: Left Panel: False positive rate of the seabed. Right panel:  Area of detectability and probability of 
detection of a 300T leakage on the Goldeneye area. 
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Abstract 

Carbon capture with offshore storage may take place at various geographical locations, characterized by diverse physical and 
biogeochemical properties and dynamics of the overlying water. In order to ensure storage integrity, baseline conditions must be 
carefully assessed for each potential storage area, which will allow design and deployment of optimal monitoring and sampling 
programs and establish appropriate site-specific criteria for anomaly detection, to allow timely reaction and necessary remedial 
measures. 
Within this paper, we assess applicability of using outputs of coupled hydrodynamic-biogeochemical models for the selection of 
appropriate variables to describe baseline variability and, consequently, strategies for the following monitoring. Via application 
of multivariate linear regression we identify combinations of modelled variables that best predict variability in pCO2 at a location 
corresponding to the potential storage site at Goldeneye Field in the Central North Sea. Although some variable pairs better 
predict pCO2 variability, we focus on a combination of oxygen saturation and silicate, as variables that can potentially be 
frequently and accurately monitored over long periods. In this work we employ highly simplified leakage scenarios to highlight 
the accuracy of baseline characterization and implications for establishment of thresholds for anomaly detection in highly 
dynamic marine environments. We conclude that hydrodynamic-biogeochemical models are invaluable tools for informing cost-
effective monitoring strategies regarding the optimal number and combination of parameters surveyed and for establishing 
appropriate anomaly criteria for each potential storage location. 
 
Keywords: Carbon capture and storage, baseline monitoring, leak detection, ecosystem modelling, ERSEM, multivariate regression 

1. Introduction 

Carbon capture with offshore storage may take place at various geographical locations, characterized by diverse 
physical and biogeochemical properties and dynamics of the overlying water. Baseline conditions, including any 
periodic (e.g. seasonal) and episodic (e.g. due to lateral advection) temporal variability, must be carefully assessed 
for each potential storage area, which will allow design and deployment of optimal monitoring programs for storage 
integrity [1]. Baseline characterization is also a necessary prerequisite for establishing appropriate site-specific 
criteria for anomaly detection that would ensure timely reaction and appropriate remedial measures. 
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Using covariance between the partial pressure of CO2 (pCO2) and the saturation of dissolved oxygen in seawater 
to characterize baseline conditions has been proposed previously, and several options to establish thresholds for 
anomaly detection have been discussed [2, 3]. In terrestrial systems departure from rigid co-variance relationships of 
a few easily measurable variables provides natural baseline and has been successfully implemented to indicate 
anomalies which may result from a CO2 release [4]. However, dynamic and diverse nature of marine environments 
hinders our ability to establish thresholds universally valid at different locations and time instances.  

Thorough characterization of any marine region requires simultaneous assessment of many variables over a 
sufficiently long time period, which is usually a costly and time consuming task. However, coupled hydrodynamic-
ecosystem models set up for an area of interest, can produce a high amount of data at appropriate spatial and 
temporal resolution, allowing description of the system at a level of detail not attainable with traditional sampling 
techniques. Therefore, modelling products carefully validated against observational data can be particularly 
applicable for the selection of appropriate variables to describe baseline variability and, consequently, establish 
optimal monitoring strategies. 

To test the applicability of models for this task, in this pilot study we applied simulation outputs of a well-
established biogeochemical-ecological model ERSEM for baseline characterization at a potential CCS site in 
Central North Sea. Building and expanding on previous approaches, we test if co-variance of pCO2 with two 
variables could lead to improved accuracy of baseline description and, consequently, anomaly detection. 

2. Model description 

For the purpose of our study we use the coupled hydrodynamic-biogeochemical modelling suite NEMO-FABM-
ERSEM configured on the Atlantic Meridional Margin (AMM7) domain, which extends from 20°W to 13°E and 
40°N to 65°N, and has a horizontal resolution of 1/15 of a degree in latitudinal and 1/9 of a degree in longitudinal 
direction, corresponding to ~7 km. Vertically, the model is resolved into 50 sigma layers. The model is initialized in 
1981 and is forced with ERA interim reanalysis of European Centre for Medium-Range Weather Forecasts [5]. 

ERSEM (Fig. 1) is a generic model of marine biogeochemistry and the ecosystem dynamics of the lower trophic 
levels. ERSEM simulates planktonic and benthic parts of the marine ecosystem and includes the cycles of the major 
chemical elements of the ocean (carbon, nitrogen, phosphorus, silicate, and iron), the microbial food web, a sub-
module for the carbonate system, calcification, and a full benthic model [6]. 

For the purpose of this study, time-series of near-bottom daily mean modelled variables covering a 10-year 
period (01.01.2000-31.12.2009), at a location corresponding to the potential CCS site at Goldeneye Field in the 
Central North Sea (58.00°N, 0.35°W, depth ~120 m), were extracted from the model. 
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Figure 1. Conceptual diagram of ERSEM 

3. Results and discussion 

3.1. Baseline characterization 

Time-series of near-bottom pCO2 (Fig. 2, blue line) show distinct seasonal variability: high values are typical in 
autumn, while low values during winter (maximum range 165.6 µatm). Steady build-up of pCO2 in the near-bottom 
waters during the course of a year is fuelled by mineralization of sedimented organic matter (OM), while abrupt 
decline is caused by breakup of water column stratification. Despite similarity in general seasonal pattern, there is a 
considerable degree of inter-annual variability caused by interplay of physical and biogeochemical dynamics. 

As a first step towards baseline characterization, we establish which variables are best at explaining variability of 
pCO2 in the near-bottom layer of the model (Table 1). While oxygen saturation explains 43.4% of variability in 
pCO2, inorganic nutrients – phosphate, nitrate and silicate, explain 55.7, 59.5 and 68.9% of variability, respectively. 
Inorganic nutrients tend to follow pCO2 dynamics (positive correlation), as they are released into near-bottom water 
following degradation of sedimented OM, and are consecutively mixed up with the breakdown of stratification. 
Strong correlation with silicate (0.83) is indicative of substantial contribution of diatoms to benthic OM, while 
stronger correlation with nitrate than with ammonium suggests high nitrification activity within our study area. 

 

Table 1. Variables exerting strongest correlation with pCO2 in the model 

Variable Variability explained (%) 
Pelagic bacteria 41.4 
Oxygen saturation 43.4 
Phosphate 55.7 
Nitrate 59.5 
Silicate 68.9 
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Table 2. Pairs of variables exerting strongest correlation with pCO2 in the model 

Variable 1 Variable 2 Variability explained (%) 
Porewater ammonium  Bacteria 72.1 
Bacteria  Silicate 72.2 
Oxygen saturation  Silicate 72.3 
Total organic carbon  Silicate 72.3 
Ammonium Bacteria 74 
Meiofauna  Bacteria 75 
Porewater nitrate  Bacteria 78.2 
Porewater oxygen  Bacteria 79.1 

 
 
Following this initial model-based finding that near-bottom inorganic nutrients can be better indicators than 

oxygen saturation for baseline characterization at our study area, we test if regression using combination of two 
variables to explain variability in pCO2 can lead to further improvement in accuracy. For this purpose, correlations 
of modelled time-series of pCO2 with combinations of two other variables were calculated. Table 2 shows pairs of 
variables that explain variability in pCO2 better than any single variable tested. Pelagic bacteria or silicate in 
combination with other variables were found to be the best predictors of pCO2 variability, with porewater oxygen - 
pelagic bacteria combination explaining 79.1% of variability. However, since our aim is to inform monitoring 
programs, it is rational to establish a baseline based on a combination of variables that can be easily, frequently and 
cost-effectively monitored over long periods of time. Recent first deployments of in situ silicate sensors showed 
good results and demonstrated great potential [7].Therefore in the following examples we focus on combination of 
silicate concentration and oxygen saturation, which explain 72.3% of variability in pCO2 in the model (Fig. 2, green 
line).  
 

 

Figure 2. Time-series of modelled and predicted near-bottom pCO2 (upper panel) and their difference (lower panel) 
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Applied for anomaly detection, maintenance of correlation between predicted and modelled (observed) pCO2 at 
any point in time would lead to some level of confidence of storage integrity. Increase in modelled (observed) 
compared to predicted pCO2 above certain threshold (ΔpCO2) could thus indicate a possibility of leakage. Notably, 
however, the difference between modelled and predicted values is not constant due to high variability of the system 
(Fig 2, black line), which will have implication for anomaly detection.  Here we test a selection of constant detection 
thresholds (Table 3). A threshold of 15 µatm was often exceeded in summer-autumn months; a higher threshold of 
30 µatm was exceeded less often, while a difference higher than 50 µatm was observed only 1% of a time in 
November. This implies that more stringent thresholds will increase probability of false leakage detection, especially 
during summer-autumn period. On the other hand too high threshold can leave leaks of lower intensity undetected. 

Table 3. Detection of false leaks (% of time per months) for selected thresholds. 

Threshold Jan Feb Mar Apr May June July Aug Sept Oct Nov  Dec 
15 0.3 0 0 0 5.5 27.3 41.9 54.2 34 28.7 17 0 
30 0 0 0 0 0 0 7.4 18.4 4.7 12.3 7.3 0 
50 0 0 0 0 0 0 0 0 0 0 1 0 

 

3.2. Simplified leak scenarios 

To illustrate the potential of multivariate baseline characterization for anomaly detection, and to highlight 
implications of natural variability of the system on the choice of detection thresholds, we applied highly simplified 
leakage scenarios to the modelled pCO2 time-series, where concentrations are increased by 10% either every June or 
every October. For simplicity, thresholds of 15, 30 and 50 µatm difference between modelled (observed) and 
predicted pCO2 were assessed initially. 

In case of June leaks (Fig. 3), background pCO2 is usually high and increasing steadily, so a further 10% increase 
is clearly noticeable. In October, however, background conditions are highly variable (Fig. 4), and contribution of 
10% increase can be either clearly manifested (e.g. in 2002, 2004) or almost undetectable (e.g. in 2000 and 2005). 
This has direct implications for detection levels (Table 4): a more stringent 15 µatm threshold allows detection of 
leaks in June 99% of the time, but only 81% in October with its high inter-annual variability. Higher threshold of 30 
µatm allows to detect leaks in June 79.7%, and in October 61.3% of the time. In case of 50 µatm threshold, leaks in 
June and October can be detected 46 and 40.6% of the time, respectively. At other times (i.e. period without 
imposed leakage), the more stringent thresholds would lead to increase in detection of false leaks (e.g. for 15 µatm 
16.6 and 16.5% for June and October scenarios, respectively), as a consequence of natural system variability and 
accuracy of prediction metric. 
 

Table 4. Detection of true positives (TP) and false positives (FP) for each scenario 
 Hypothetical leak 

 June October 

Threshold %TP %FP %TP %FP 
15 99.0 16.6 81.3 16.5 
30 79.7 4.6 61.3 3.5 
50 46.0 0.1 40.6 0.1 
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Figure 3. Modelled pCO2 with 10% increase each June (blue lines) and predicted pCO2 (green line) 

 

Figure 4. Modelled pCO2 with 10% increase each October (blue lines) and predicted pCO2 (green line) 

 
 
This trend of increased frequency of true leak detection with consecutively smaller thresholds is illustrated on 

Fig. 5 for both June and October cases. Concurrently, however, increases the frequency of false leak detections. 
From the perspective of monitoring of site integrity and preparedness for mitigation, a threshold which minimizes 
false positives and maximizes detectability of true positive is required. Optimal threshold selection will thus be 
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dictated by accuracy of baseline description as well as by acceptable frequency of false positives, in particular in 
terms of costs of undertaking confirmation monitoring in the case of a false leak prediction. 

 

 

Figure 5. Detectability of true and false leaks (%) for comprehensive range of thresholds 

4. Conclusions 

Model results have shown that due to high environmental variability, strong correlation between near-bottom 
pCO2 and dissolved oxygen proposed as a storage site integrity criterion earlier [2, 3], is not the best descriptor of 
baseline conditions for our  study area, where correlation with inorganic nutrients is stronger. To assist with 
selection of optimal number of monitoring parameters for baseline monitoring, we applied multivariate linear 
regression to identify combinations of variables that best predict local variability in pCO2. Concentrating on 
variables that are relatively easily measured on a long-term basis, our results suggest using a combination of oxygen 
saturation and silicate concentration to explain variability of pCO2 with high accuracy. Further tests showed that 
only slight improvement in accuracy of baseline description could be achieved when using a combination of three 
rather than two variables (not shown), which suggests that long-term monitoring of a limited set of variables with 
high frequency might be sufficient for baseline characterization. Clearly, due to strong dynamic nature and diversity 
of physical and biogeochemical conditions, combinations of different variables will be identified as optimal for 
different locations. 

Compared to multivariate characterization in terrestrial environment, which uses fixed gas composition in the 
atmosphere as a starting point to baseline description and anomaly detection [4], rigid relationships are not 
characteristic for marine environments. Therefore using models has a clear advantage in terms of spatial and 
temporal coverage, as well as large number of variables. However, model accuracy in reproducing each modelled 
process, as well as representation of different areas (e.g. coastal zone) can vary, which requires attention. ERSEM 
configuration applied for our study does not include parameterizations of methane dynamics, which could be used to 
explain increase in pCO2 due to oxidation processes within sediments. 

In this study we introduced a method to detect baseline conditions for offshore storage sites based on covariance 
of several variables with observed pCO2. Simplified leak scenarios were used merely to illustrate the accuracy of 
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baseline description and highlight variability of the marine environment. We intend to expand this work in the future 
by comparing several contrasting sites and propose generic method for establishing detection thresholds. 

Our main conclusion is that hydrodynamic-biogeochemical models are invaluable tools for informing cost-
effective monitoring strategies on optimal number and combination of parameters surveyed and for establishing 
appropriate anomaly criteria for each potential storage location. 
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Abstract 

An adequate monitoring program will be an intrinsic part of all CO2 storage projects, as required by regulations. This program 

must involve a surface monitoring component in addition to the subsurface methods. Should anomaly be detected, the monitoring 

program enters the costly confirmation modus, i.e., surveys to localize or dispel suspicion of an ongoing seep. Inverse methods 

applied to the tracer transport equation, using proper current statistics, are demonstrated here as a valuable tool to make 

predictions on where a seep might be located, and the flux associated with the source. The framework can be updated as new 

measurements are being collected. 

Keywords: CO2 seep localization; CCS; marine monitoring; inverse problems; Bayesian methods.  

1. Introduction 

Monitoring the injection formation with geophysical monitoring technologies, assuring that the injected CO2 

behaves as expected and to detect any CO2 migrating out of the formation, will be the backbone of the monitoring 

program for offshore CO2 storage projects [1,2]. We argue that monitoring of the surface for any unexpected seeps 

of CO2 and other substances, as indications of a leak, are necessary in order to comply with the regulations, see [3]. 

Since the storage site must be monitored for a long period of time after injection is stopped, and the area in which 

migrating CO2 might reach the seafloor is large, the marine monitoring program will impose additional costs and 

challenges to the storage project [4–6]. 

Environmental changes, e.g. changes in bottom fauna or in the pelagic ecosystem [7,8], detection of bubbles from 

ship sonars [9,10], or elevated concentration of dissolved gases [11–15], can be used as indicators of marine gas 

releases. However, the real challenge is the high variability of the marine environment, both in current conditions 

[16] and in biochemical activities [13,17]. Hence environmental monitoring poses new challenges compared to the 
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classical environmental monitoring procedures developed during decades of offshore petroleum activities. 

Communicating CCS monitoring for assuring purposes might be challenging [18] and even the successful history 

of offshore oil and gas exploration give no guarantee for public acceptance, [19]. Tools are under development for 

assessing the total environmental stress imposed on the oceans, e.g. Cumulative Effects Assessments in view of 

Marine Spatial Planning and ecosystem services framework [20–22]. The monitoring program also have a role in 

communicating risks and benefits for storage projects and assures against unjustified accusations for having adverse 

environmental effects [23]. 

Studies on how to design monitoring programs for detecting a seep, incorporating the natural variabilities, for 

fixed installations have been performed in [24–27] and for Autonomous Underwater Vehicles (AUV) [28]. It is a 

challenge to quantify the uncertainties involved, and how to make a decision on upscaling to the confirmation phase 

based on available data [29]. These studies have to rely on simulated data, both for the environmental baseline and 

predictions on the signature from a seep of stored CO2 to the water column. The European Union funded project 

STEMM-CCS (http://www.stemm-ccs.eu) addresses procedures on how to obtain a proper environmental baseline. 

The role of numerical modelling in this context is summarized in [30]. A combination of measurements and model 

predictions is also necessary for utilizing machine learning techniques as a tool to analyse time series from the 

monitoring [31].  

Here we address how times series from the monitoring program, together with a reduced transport equation, can 

assist in giving estimates of the location and rate of seeps through the seafloor. We present two approaches using the 

velocity field generated by the Bergen Ocean Model (BOM) as reported in [15]. 

2. Methods and results 

The field of inverse problems has a long history in mathematics and engineering providing tools for estimating 

parameters in a model given some measured quantities, see [32]. In the classical settings, the goal is to find the 

optimal set of the parameters that minimize a cost function, which typically measures the distance from the model 

solution to the observations. In the case of point-leak scenarios, the locations and intensities of the sources are the 

desired unknown model parameters. The minimization of the cost function is performed by using an iterative 

method such as, e.g., a gradient descent search where the parameters are updated in every iteration. 

In recent years, the Bayesian formulation of inverse problems has become more popular partially due to growing 

available computing resources, see [33]. Compared to the classical approach, the parameters are not deterministic 

but considered to be random variables whose probability distribution (posterior distribution) we would like to obtain 

based on the observations, an underlying model and a-priori information. In order to single out the representative 

parameter values one could for example identify the maximum-a-posteriori estimate (MAP) of the posterior 

distribution. Under some assumptions on the error distributions and prior information, the two approaches coincide. 

Both approaches however rely on being able to perform simulations of the underlying model multiple times. The 

transport of CO2 in the ocean is typically modelled using general circulation models with additional balance 

equations for tracers, such as CO2. These models are computationally demanding and often require supercomputers. 

In particular, using a grid resolution better than 1 km, a single realization of a period of a few months can require 

more than a 100 000 simulation hours. This makes it practically impossible to use the general circulation model for 

the above mentioned approaches. 

However, under the assumption that CO2 is a passive tracer, i.e. the CO2 concentration does not influence on 

seawater density, the advection-diffusion equation and the ocean dynamics model have only one-directional 

coupling. This allows us to use velocity fields obtained from ocean circulation models as input to the advection-

diffusion model, reducing the computational cost enough to use classical optimization methods to minimize a cost 

function or a Markov Chain Monte Carlo method for sampling from a posterior distribution. The advection-diffusion 

model can also be used to create various leak scenarios, e.g. different locations and fluxes, including time varying 

fluxes, to add scenarios to the data sets needed for other methods of analysis [31]. 

Let 𝑐(𝑥, 𝑡) be the concentration of a contaminant at the position 𝑥 and time 𝑡. Knowing the water flow in the area 

of interest 𝛺 and the diffusivity of the contaminant, transport of the contaminant in the ocean environment can be 
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described by the advection-diffusion equation 

 

𝜕𝑐

𝜕𝑡
= 𝐷 △ 𝑐 − 𝑤 ⋅ 𝛻𝑐 + 𝑓, 𝑥 ∈ 𝛺, 𝑡 ∈ [0, 𝑇],     (1) 

 

with some appropriate boundary and initial conditions. Here 𝛺 is a bounded connected domain in 𝑹𝑛 , 𝑤 =
𝑤(𝑥, 𝑡) ∈ 𝑹𝑛 (𝑛 = 2,3) is a divergence free velocity field that describes the water flow, and 𝐷 is a diffusion 

coefficient. The source term 𝑓(𝑥, 𝑡) is assumed to be in the form 

 

𝑓(𝑥, 𝑡) = ∑ 𝑞𝑗
𝑁𝑠
𝑗=1 𝛿(𝑥 − 𝜉𝑗),     (2) 

 

where 𝛿 is the 𝑛-dimensional Dirac -delta function, 𝜉𝑗 are the source locations and 𝑎𝑗 are the corresponding 

intensities. 

In applications, the point sources 𝜉𝑖 are substituted by small regions around 𝜉𝑖 which amounts to replacing 

𝛿(𝑥 − 𝜉𝑗) with functions of small support. Thus, the 𝛿(𝑥 − 𝜉𝑗) can be viewed as a limiting case of a point source. 

To advect the concentration 𝑐(𝑥, 𝑡) forward in time, it is important to apply a numerical scheme that is gradient 

preserving to capture possible sharp fronts. At the same time, the advection schemes need to be monotonic to avoid 

artificial over- and undershooting, see [34,35]. The BOM, see [36,37], has been used to compute the velocity field 

𝑤(𝑥, 𝑡) [15]. It applies a monotonic TVD (Total Variance Diminishing) scheme with a superbee limiter for 

advection, see the test of advection schemes in [38]. 

Assuming that the time series of the CO2 concentration is available at 𝑀 different locations {𝜒1, . . . 𝜒𝑀} and is 

cleaned from natural variability (with some error), we would like to estimate the location of leaks and their intensity. 

To be more strict, let 𝜽 be the vector of all unknown parameters 𝑞𝑗 and 𝜉𝑗, see in (2), and the data is given as 𝑑𝑚𝑘 =

𝑐(𝜒𝑚, 𝑡𝑘; 𝜽𝑡𝑟𝑢𝑒) + 𝑒𝑟𝑟𝑜𝑟, 𝑘 = 1, . . . , 𝐾. Then our goal is to minimize the difference between the data and the model 

predictions, i.e., 

 

𝐽(𝜽) = ∑(𝑐(𝜒𝑚, 𝑡𝑘; 𝜽) − 𝑑𝑚𝑘)2

𝑚,𝑘

→ 𝑚𝑖𝑛, 

 

such that 𝜽 satisfies some constraints, that is, 𝜉𝑗 ∈ 𝐷 ⊂ 𝛺 and 𝑞𝑗 ≥ 0. 

The fact that, not only the location and intensity but also, the number of leaks are unknown substantially 

complicates the problem. In order to deal with this complication we simplify the model even further. We fix all the 

possible leak locations 𝑥1, . . . , 𝑥𝑁 , 𝑁 ≥ 𝑁𝑠, see Fig.1 (left), and then simulate one leak at a time with fixed intensity 

which we set, without loss of generality, to one. That is, we obtain 𝑐1(𝑥, 𝑡), . . . , 𝑐𝑁(𝑥, 𝑡), as the solutions of (1) with 

𝑓 = 𝛿(𝑥 − 𝑥𝑖), 𝑖 = 1, . . . , 𝑁, see example in Fig.1 (right). Since the advection-diffusion model is linear, any solution 

to (1)-(2) is given as a linear combination 

 

𝑐(𝑥, 𝑡; 𝒂) = ∑ 𝑎𝑖
𝑁
𝑖=1 𝑐𝑖(𝑥, 𝑡),     (3) 
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where 𝒂 = (𝑎1, . . . , 𝑎𝑁), and 𝑎𝑖 = 0 if the corresponding leak location 𝑥𝑖 is inactive, and 𝑎𝑖 = 𝑞𝑗 if 𝑥𝑖 = 𝜉𝑗 . Note 

that 𝒂 is dimensionless as, formally, 𝑎𝑖 = 𝑞𝑗 1⁄ . We assume in this paper that the list of all possible leak locations is 

complete and the two models are equivalent.  

Here we use a deterministic and a Bayesian approach, using a Hamiltonian Monte Carlo (HMC) sampling [39], to 

estimate the parameters 𝒂. Obviously, the number of sensors and their placement affects the solution outcome as it is 

possible that the data does not capture the signal of one or several possible leaks. The placement of sensors is an 

important and difficult problem than can be addressed in an extension of this work. 

In the deterministic case, we can easily reformulate the problem as linear least squares problem with constrains 

 

𝑚𝑖𝑛
𝒂

∥ 𝑪𝒂 − 𝒅 ∥2, 𝑪 ∈ 𝑹𝑀𝐾×𝑁 , 𝒅 ∈ 𝑹𝑀𝐾

 𝑠. 𝑡. 𝟎 ≤ 𝒂 ≤ 𝒂𝑚𝑎𝑥 .                                              
   (4) 

 

However, solution to the problem above does not contain information about uncertainties. Therefore, we also use a 

Bayesian approach. Using Bayes theorem we define the probability density function for 𝒂 given the data 𝒅 as 

 

𝑝(𝒂|𝒅) = 𝐶𝑝𝑝(𝒅|𝒂)𝑝(𝒂), 

 

where 𝑝(𝒅|𝒂) and 𝑝(𝒂) are the likelihood function and prior density, respectively, and 𝐶𝑝 is a normalization 

constant. For independent unbiased normally distributed measurement errors we have 

 

𝑝(𝒅|𝒂) ∝ exp (−
1

2
(𝑪𝒂 − 𝒅)𝑇𝜮−1(𝑪𝒂 − 𝒅)), 

 

Fig. 1. (Left) The studied domain with potential seep locations, stars, measurement points, crosses, and the locations of the two seeps, red circles; 

(Right) Snapshot of the concentration at the central location, 𝑐13(𝑥, 𝑡), at 𝑡 = 100ℎ. 
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where 𝜮 is a diagonal covariance matrix of the noise introduced in 𝒅, if the elements of the noise vector are 

independent. Otherwise 𝜮 is a positive definite symmetric matrix. 

The prior, here 𝑝(𝒂) ∝ ∏𝑖=1
𝑁 𝑝(𝑎𝑖), should incorporate a-priori information on the leaks and their intensities. To 

mimic the constrains in (4) we choose 𝑝(𝑎𝑖) as in Fig.2 (left). Finally, a series of sampling methods could be used to 

sample from the posterior probability density 𝑝(𝒂|𝒅). Their efficiency could vary depending on the problem. 

For the numerical example we used the velocity fields from the 800 meters resolution BOM simulation on a 

72.8 × 74.4 squared kilometers domain centered at Sleipner A (1.94 E 58.36 N), see [15]. For simplicity we 

considered only the bottom layer, that is, 𝑛 = 2. 

We choose 25 potential leak locations indicated by blue stars in Fig.1(left) numbered column-wise starting from 

the bottom left one. In Fig.1 (right) one can see the snapshot of the leak #13 with intensity 𝑎13 = 1 at 𝑡 =
100ℎ.  Sensors were placed at nine different locations, blue crosses in Fig.1(left). Active seeps were chosen to be at 

#8 and #21 with intensities 𝑎8 = 0.3 and 𝑎21 = 0.8, respectively. For this set up, the time series 𝑐(𝜒𝑖 , 𝑡) are plotted 

in the upper panel of Fig.2 (right), the lower panel is similar but with Gaussian noise added. In Fig.3 we have plotted 

the results of  both constrained least squares method (3) with 𝒂𝑚𝑎𝑥 = 2 and the Bayesian approach. The black 

circles are the solutions of the former approach and are in the excellent agreement with the real solution, in 

particular, max|𝑎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑎𝑡𝑟𝑢𝑒| = 0.0047. The central red mark in Fig.3 indicates the median, the bottom and 

top edges of the box indicate the 25th and 75th percentiles, respectively, for the Bayesian method. The whiskers 

extend to the most extreme points, not considered outliers. While all 𝑎𝑖 are supposed be nonnegative, the negative 

values of 𝑎𝑖 here are consistent with the noise introduced. For this method max|𝒂𝑚𝑒𝑑𝑖𝑎𝑛 − 𝒂𝑡𝑟𝑢𝑒| = 0.0475 and 

max|𝒂𝑀𝐴𝑃 − 𝒂𝑡𝑟𝑢𝑒| = 0.0065, where 𝒂𝑀𝐴𝑃 is the MAP of the log probability density 𝑝(𝒂|𝒅) obtained by the limited 

memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton optimizer, see [40]. We do not plot 𝒂𝑀𝐴𝑃 as it is almost 

not distinguishable from the least squares and true solutions. The two active seeps are in locations #8 and #21, 

correctly predicted by both methods 

3. Discussion 

Obviously, a solution to (3) is only an approximation of a solution to (1)-(2) if the possible leak locations are not 

fully known. In this case, the positions and number of possible leaks could be chosen such that the model error in (3) 

is sufficiently small, and then further reduced by refining the position set-up iteratively. The Bayesian approach 

could further be used to design the efficient sensors layout and to optimize the AUV search path. 

Fig. 2. (Left) Assumed prior for the flux rates 𝑝(𝑎𝑖); (Right) The time series of concentration at nine considered locations without (upper panel) 

and with (lower panel) added Gaussian noise. 
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The lack of data due to, e.g., inefficient sensors layout, would lead to an under-determined system in (4). This 

issue could be solved by introducing a regularization term, e.g., Lasso. The regularization term could be 

incorporated to the prior 𝑝(𝑎) as well to obtain a similar solution. We would like to emphasize however, that the 

Bayesian approach with a proper choice of prior could allow a better judgment regarding the quality of the data. 
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Abstract 

For CO2 Capture and Storage (CCS) technologies to be classified as a climate change mitigation option, an efficient, safe and 

enduring storage needs to be verified through site-specific monitoring programs, which is required by the international and 

national regulations. In the case of offshore geological storage, the high spatiotemporal natural variability of seawater CO2 

hampers the interpretation of a seepage signal. Therefore, the characterization of the spatiotemporal natural variability of 

seawater CO2 through baseline studies is required when designing an efficient monitoring program. 

 

Here we present a stoichiometric method called Cseep for the determination of excess seeped CO2 dissolved in the water column. 

The method takes advantage of the fact that the production and consumption of seawater CO2 by natural process can be predicted 

from variables that are not impacted by CO2 seepage. For instance, biological production of CO2 is always associated with a 

certain amount of oxygen consumption and nutrient production while CO2 seepage has no specific effect on oxygen and nutrient 

levels in seawater. We discuss the applicability of the Cseep method as an offshore CCS monitoring tool around the Goldeneye 

area – a potential offshore CCS site in the Northern North Sea. We also evaluate how the choice of measured parameters 

influences the sensitivity/accuracy of the Cseep calculations. The results (partly preliminary) show that the Cseep method clearly 

minimizes the effect of natural variability on seawater DIC measurements while highlighting the simulated seepage signal. 

Moreover, Cseep values computed using data achievable with autonomous sensors can have an uncertainty similar to Cseep values 

obtained with highly accurate benchtop instrumentation, implying that the method can be fully automated. 

 

Keywords: CCS monitoring; CO2 seepage; geochemical tracer; Cseep method. 

1. Introduction 

For CO2 Capture and Storage (CCS) technologies to be categorized as a climate change mitigation option, they 

have to demonstrate an efficient, safe and enduring storage of CO2 [e.g., 1,2]. Therefore, monitoring and verification 

is required at storage sites by national and international regulations [e.g., 3,4,5]. Primary monitoring of storage 
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reservoirs is based on seismic techniques imaging CO2 through the overburden [6]. However, the detection threshold 

of such techniques may be of the order of 103 t CO2 [6]. Therefore, possible seepage at low levels may not be 

detected and monitoring for emissions at the surface provides an important secondary monitoring strategy. 

 

Globally many potential CCS storage reservoirs are located offshore [7], and a number of subsea storage 

demonstration projects are in operation worldwide [8]. Since CO2 is a naturally occurring gas in seawater, with 

dynamic concentration in both space and time [e.g., 9,10], and ocean dynamics is highly variant, e.g. due to tides and 

local conditions [e.g., 11], seeps will generate varying and highly anisotropic signals [12] with concentrations that 

may be within the range of natural variability of seawater CO2. Therefore, water column monitoring with the 

purpose of detecting possible seepage from unknown locations is challenging in many aspects. Environmental 

changes, e.g. changes in bottom fauna or in the pelagic ecosystems [13,14], bubble detection using ship sonars 

[15,16], or measurements of elevated concentration of dissolved gases [17,18,19], can be used as indicators of 

unintended gas releases from the offshore CCS storage. The challenge in detecting seeps using surface monitoring 

techniques is to be able to distinguish the seepage signal from the “noise” created by the natural variability. 

Therefore, baseline characterization is crucial to understand which environmental anomalies are associated with 

natural processes and which are related to CCS seepages, while minimizing the chance for false positives. It is also 

important to determine what degree of anomaly will mobilize the more expensive confirmation and localization 

monitoring, i.e., the anomaly threshold. 

 

In the case of concentration-based monitoring, a cost-efficient monitoring design maximizing seep detection also 

requires the knowledge of seep morphology. Marine system models can simulate a wide variety of “seepage” 

scenarios, including multi-phase simulations modelling the dynamics of bubble plumes as well as the dissolved 

phase, and seepage morphology, in particular the nature of flow across the sediment-water interface [e.g., 20,21,22]. 

Models can also determine the optimal sensor combinations and deployment strategies [7,23]. Baseline statistics and 

predictions of discharge characteristics proved successful to design cost-efficient deployment of fixed sensors on the 

seafloor [24,25,26,27] and survey pathway of Autonomous Underwater Vehicles (AUVs) for detecting anomalies in 

water column CO2 concentration [28]. However, the design of cost-efficient monitoring for surface detection relies 

on the definition of anomaly thresholds. 

 

Defining anomaly thresholds for geochemical monitoring of the water column is challenging due to the 

complexity of the seawater CO2 system [e.g., 7,9,10]. When CO2 dissolves in seawater, it reacts with it forming 

carbonic acid (H2CO3), which rapidly dissociates into bicarbonate ions (HCO3
-; Eq. 1), which in turn can also 

dissociate into carbonate ions (CO3
2-; Eq. 2) according to the following equilibrium reactions: 

CO2 + H2O ↔ H2CO3 ↔ HCO3
- + H+ (1) 

HCO3
- + H+ ↔ CO3

2- + H+ (2) 

Natural processes, such as photosynthesis/respiration, biosynthesis/dissolution of calcium carbonate (CaCO3) and 

changes in temperature and salinity, affect the complex seawater CO2 system. Therefore, the seawater CO2 content is 

highly dynamic in both space and time, thus hampering the discrimination of seepage signals from natural variability 

signals. Consequently, the ability to detect possible CO2 seepages from offshore storage requires the characterization 

of the natural variability of the seawater CO2 system and its drivers through site-specific baseline studies. 

 

Here we discuss the applicability of the Cseep method [29] as a CCS monitoring tool around the Goldeneye area 

(centered at 58.00°N 0.35°W) – a potential offshore CCS site in the Northern North Sea (Fig. 1). The Cseep method 

minimizes the effect of natural variability on water column DIC measurements, allowing easy detection of CO2 

excess originating from a seepage. The Cseep method uses knowledge of the seawater CO2 system [e.g., 9,10], as well 

as, the natural processes affecting it. A similar procedure has proved successful to estimate the oceanic uptake of 

excess CO2 from the atmosphere [e.g., 30]. The Cseep method assumes that there is a nearly constant theoretical 

background DIC concentration (Cb) in seawater, which is dictated by the history and physical properties of the water, 

and a fluctuating DIC component (∆C) governed by natural variability and/or seeps, which is superimposed to the 

theoretical background so that:  

Cm = Cb + ∆C (5) 
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where Cm is the measured DIC concentration. The ∆C term can be further decomposed into biology-driven 

variability (∆Cbio), air-sea exchange-driven variability (∆Case), mixing-driven variability (∆Cmix) and impact of seeps 

(Cseep).  

Fig. 1. Map of the Northern North Sea with the position of Goldeneye (red square). Blue dots indicate sampling locations (stations) and numbers 

refer to station numbers. 

2. Measurements of the seawater CO2 system 

The seawater CO2 system can be characterized by four measurable master variables [10]: total alkalinity (TA), 

total dissolved inorganic carbon (DIC), partial pressure of CO2 (pCO2), and pH. These master variables can be 

measured using a wide variety of methods [31].  

 

Seawater TA is related to the charge balance in seawater and has units of moles per kilogram of solution. It can be 

approximated by the expression: 

TA = [HCO3
-] + 2[CO3

2-] + [B(OH)4
-] + [OH-] – [H+] (6). 

TA is determined by acidimetric titration and currently discrete sampling and benchtop instrumentation gives the 

highest precision.   

 

Seawater DIC is the sum of the concentrations of all inorganic carbon compounds dissolved in seawater. It is 

expressed in moles per kilogram of solution and is given by the expression:  

DIC = [CO2]* + [HCO2
-] + [CO3

2-] (7); 

where [CO2]* accounts for the concentrations of dissolved CO2 and H2CO3. Similar to TA, DIC is determined by 

acidimetric titration and currently discrete sampling and benchtop instrumentation gives the highest precision.   

 

The pCO2 in an air sample in equilibrium with a seawater sample is given by the expression:  

pCO2 = xCO2 p  (8); 

where xCO2 is the mole fraction of the CO2 in the air sample and p is the total pressure of the gases. Both xCO2 and 

p are usually measured directly. Several sensors measuring pCO2 in situ at high frequency and in an autonomous 

mode exist and present satisfactory precision and accuracy. 

 

The hydrogen ion concentration in seawater ([H+]) is reported as a pH: 

pH = -log10([H+]) (9). 
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Seawater pH can be determined by a potentiometric or spectrophotometric techniques. For this variable, as for pCO2, 

there are sensors that can measure in situ at high frequency and in an autonomous mode with satisfactory precision 

and accuracy. 

 

By measuring any two of the above-mentioned four master variables characterizing the seawater CO2 system 

(along with temperature, salinity, pressure and with the knowledge of other non-CO2 acid-base systems in seawater), 

it is possible to calculate those not measured. The selection of the appropriate two measured parameters can produce 

uncertainties in the computed parameters that are the same order of magnitude as their experimental errors [32]. 

3. Modeling the natural variability of the seawater CO2 system 

Natural processes affecting the seawater CO2 system on seasonal to decadal time scales are adequately known. 

Water column DIC distribution is usually controlled by (i) air-sea exchange (followed by downward transport), (ii) 

biological processes of photosynthesis/respiration and formation/dissolution of CaCO3 and (iii) mixing of water 

masses. In order to detect the CO2 seeped from offshore CCS reservoirs using water column DIC measurements, a 

model that determines the effect of each of the above-mentioned natural processes on seawater DIC is necessary to 

filter out fluctuations arising from natural processes. 

 

Photosynthesis takes up CO2 and primary nutrients from seawater and produces oxygen (O2) and organic matter. 

Inversely, degradation of organic matter through respiration uses O2 and releases CO2 and nutrients back to the water 

column. The changes in DIC, dissolved O2 and nutrients through photosynthesis and respiration take place in 

constant proportions called Redfield ratios [33]. Therefore, the change in seawater DIC related to photosynthesis and 

respiration can be quantified from changes in nutrients or O2 and the knowledge of the Redfield ratios [e.g., 33,34]. 

 

Similarly, in situ formation (dissolution) of CaCO3 structures removes (releases) CO3
2- from (to) seawater, 

therefore decreasing (increasing) TA and DIC in a 2:1 ratio [9]. Consequently, measurements of TA can be used to 

(i) monitor the in situ CaCO3 changes and (ii) quantify the impact of such changes on water column DIC [e.g., 35]. 

 

The change in DIC due to air-sea exchange is driven by differences in pCO2 between air and seawater. The effect 

of this process on seawater DIC can be estimated from direct pCO2 measurements in air and seawater along with 

observations of wind speed (10 m above sea surface), sea surface temperature, sea surface salinity, and mixed layer 

depth.   

 

Mixing of water masses changes the distribution of DIC and TA in the water column. In the presence of two 

water masses with known conservative properties (e.g., temperature and salinity), then a conservative mixing line 

can be constructed from a property-property plot to estimate the water mass fractions that make up the sample. 

Given these fractions, together with the DIC concentrations of the water masses, the DIC changes arising from 

mixing of varying water mass fractions can be estimated. Mixing between more than two water masses can be 

treated similarly, but it requires additional data from other conservative tracers. The addition/removal of freshwater 

also changes DIC and TA in the water column. The impact of this freshwater flux is minimized by a salinity 

normalization procedure, which adjusts seawater CO2 system parameters to one reference salinity – often set to the 

mean salinity of the study area [e.g., 34]. 

 

From the above discussion it is understood that changes in seawater DIC due to natural processes can be modeled 

using variables that are assumed to be unaffected by CO2 seepage. This is the motivation of the Cseep method. 

4. The Cseep method 

Once the drivers of the natural variability are ‘modeled’ as described in the previous section, we can rewrite Eq. 

(5) as: 

Cm – ∆Cbio – ∆Cmix – ∆Case = Cb + Cseep   (10); 
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in which the terms of the left-hand side are known and those of the right-hand side are unknown. To determine Cb, 

we need measurements at a reference station, i.e., a station with no seeps and therefore with Cseep=0. Assuming that 

Cb is identical at the reference station and the monitored area, Cseep is estimated using Eq. (10).  

 

To ensure that Cb is identical in both the reference station and the monitored area, a sound site-specific baseline 

characterization is needed. This baseline study should include the same measurements at both the reference station 

and the monitored area during a period of time long enough to capture the seasonal and annual variability. It would 

also be desirable that the baseline characterizes the long-term trends (i.e. change in seawater CO2 system due to the 

uptake of atmospheric CO2 released by human activities) in both locations. 

5. Application of the Cseep method in the Goldeneye area 

We applied the Cseep method to publicly available seawater CO2 system measurements around Goldeneye (Fig. 1; 

https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2/cruise_table.html, cruises 661–665), a potential geological 

storage formations for CCS in the Northern North Sea. To test the ability of Cseep for seep detection, we created an 

artificial seep by adding extra DIC (34 µmol kg-1) to one of the sampling locations (station 56) per cruise. This extra 

DIC added is within the range of the natural variations of DIC in the area. As reference station, we chose station 57. 

All other stations were treated as monitored stations.  

 

The ‘seepage’ signal is obscured by the natural variability in the DIC around Goldeneye (Fig. 2a), where in some 

cases the DIC value of the seepage station equals to that in a non-seep station (see for example Fig. 2a, sampling 

period 11/2001). This problem is minimized when applying the Cseep methodology (Fig. 2b). The Cseep method 

clearly minimizes the effect of natural variability on seawater DIC measurements (Fig. 2), and highlights the seepage 

signal. 

Fig. 2. (a) Natural variability of dissolved inorganic carbon (DIC) in the near-bottom samples at stations around Goldeneye (Fig. 1) during four 

cruises: 11/2001, 02/2002, 05/2002 and 08/2005. (b) Cseep values resulting from solving Eq. (10) for the near-bottom DIC measurements in (a). In 

both plots, an artificial seepage was created by adding a constant DIC value of 34 µmol kg-1 to station 56. 

https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2/cruise_table.html
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Except at station 56 (the station with the simulated seep), Cseep values at the monitored stations should be zero 

since there is no seep occurring at those stations. Therefore, non-zero Cseep values are indicative for the uncertainty 

associated with the Cseep calculations. This uncertainty has two components: a random component indicated by the 

spread of the Cseep values at each station, and a systematic component determined from station-to-station differences. 

The former depends on how well we estimate the impact of natural processes affecting seawater DIC (∆Cbio, ∆Cmix, 

and ∆Case); while the latter depends on how identical is Cb in the reference station and the monitored area. 

6. Automation of the Cseep method 

The Cseep method was originally demonstrated using discrete sampling and highly accurate benchtop 

instrumentation for DIC and TA [29]. However, the combination of discrete sampling and benchtop instrumentation 

is resource intensive and time-consuming, which makes it a non-ideal technique for CCS monitoring purposes. 

Therefore, work is underway to optimize the Cseep method for working with measurements of autonomous sensors 

measuring at high frequency.  

 

Preliminary results show that the choice of measurement parameters and associated uncertainty influences the 

sensitivity/accuracy of the Cseep calculations. By evaluating all the possible parameter combinations in the Cseep 

calculations for the Goldeneye area (Fig. 1), we found that the uncertainty of the Cseep values computed using pH and 

TA estimated from salinity have similar uncertainty to those resulting from highly accurate benchtop measurements 

of DIC and TA. Both pH and salinity can be measured at high frequency and in an autonomous mode using sensors, 

which makes these parameters suitable for CCS monitoring purposes. Therefore, the Cseep method can be fully 

automated using measurements from sensors and algorithms. Sensors necessary for the Cseep computations can be 

placed in both fixed stations and mobile platforms (e.g., AUVs), of which placement and pathways, respectively, can 

be optimized using statistical modeling [24,25,26,27,28]. 

7. Conclusions and further remarks 

The application of the Cseep method as an offshore CCS monitoring tool around the Goldeneye area shows 

promising results. The method seems to adequately model the processes governing the natural variability of the 

seawater CO2 system, which allows minimizing their influence on water column DIC measurements and isolating 

the artificially induced CO2 seepage signal. Therefore, the Cseep method can be used to define DIC detection 

threshold. Besides, the Cseep method can be automated with in situ sensor-based measurements and algorithms. 

Therefore, the Cseep method is a potential CCS monitoring technique to be applied to geochemical water column 

measurements.  

 

Site-specific baseline with high spatiotemporal resolution is needed to accurately parameterize the natural drivers 

of the variability in seawater DIC at a specific location. Sound baseline studies will also enable choosing the best 

reference station needed for the application of the Cseep method. The reference station must be representative of the 

monitored area and not affected by seeps. The careful selection of appropriate reference station will contribute to 

reduce uncertainty in the computed Cseep values and, hence, minimize the occurrence of false positives. 

 

The implementation of the Cseep method needs a further careful site-specific evaluation of the main sources of 

uncertainty associated with the computed Cseep values. These include the evaluation of (i) the Redfield ratios 

parameterizing the DIC variability due to photosynthesis/respiration; (ii) the water masses encountered at both the 

reference station and the monitored area; and (iii) the trends in ocean acidification (i.e. change in seawater CO2 

content due to the uptake of atmospheric CO2 released by human activities) in both the reference station and the 

monitored area. 
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Abstract 

The proposed storage of CO2 in sub-seabed geological reservoirs, known as Carbon dioxide Capture and Storage (CCS), could make a practical 
and significant contribution to reducing atmospheric CO2 emissions thereby alleviating environmental and ecological damage due to climate 
change and ocean acidification. However, before any new marine activity is conducted, it is standard procedure for any environmental risks 
potentially posed by that activity to be considered. In particular, understanding what is ‘natural’ or ‘normal’ for an area is essential when 
looking to establish criteria against which potential environmental impacts can be identified, monitored and quantified. To that end, all offshore 
CCS projects would benefit from constructing an effective environmental baseline prior to the start of storage. However, due to the large spatial 
extent of storage complexes and the expectation that storage of the CO2 will be permanent, there are a number of financial, logistical and 
methodological issues associated with constructing such baselines.        
 
Firstly, sub-seabed storage complexes are sizeable structures. Whilst individual leakage events themselves are likely to be rare and have a small 
spatial impact, it might be considered that anywhere above the storage complex could potentially be the location of a leakage event. In reality 
very few areas will be at any risk from leakage but for the sake of public reassurance and in line with the precautionary principle, constructing 
an environmental baseline which covered the whole complex footprint would be prudent. However, assessing such large areas does raise 
certain challenges. The marine environment in general is highly spatially variable in terms of its physical, chemical and biological makeup with 
scales of variability ranging from the sub-metre scale corresponding to benthic patchiness, to dynamic boundaries between water masses of 
different origins, which may stretch for many kilometres. Consequently, the large area of marine environment that sits above a CCS reservoir 
will inevitably contain a mosaic of different seabed habitats and biological communities. It will also consist of varying water masses and 
pelagic biomes. This large spatial extent and high level of spatial variability, raises problems of affordability when attempting to construct the 
type of environmental baseline required to comprehensively assess any potential environmental risks associated with CCS activities.  
 
In addition to the problems associated with assessing environmental heterogeneity over large spatial scales, described above, the marine 
environment also displays high levels of temporal variability. This is particularly relevant to many of the environmental parameters that may be 
directly used to identify and monitor CO2 leakage events, such as changes in carbonate chemistry parameters which can undergo large and 
rapid fluctuations as a result of naturally occurring biological and physical processes. In addition to shorter term fluctuations, the marine 
environment is being exposed to longer-term changes in environmental conditions driven by man-made pressures such as climate change and 
changes in human activities (e.g. fishing, resource extraction, pollution). These gradual, chronic changes are especially important when 
considering the typical life-span of a CCS project. With the intention of storing CO2 permanently it is essential that future long-term changes in 
environmental conditions are understood and such changes are not falsely attributed to CCS activities. All of this means that collecting 
sufficient amounts of observational data to adequately account for tidal, seasonal, annual and decadal trends and cycles, prior to starting any 
CCS activities would be impractical using traditional methods and would delay the rapid deployment of CCS projects, thus reducing this 
technology’s potential contribution to reducing CO2 emissions.  
 
To meet the challenges of constructing effective environmental baselines that adequately account for large spatial and temporal scales, and 
thereby provide public reassurance that any potential risks are both identified and managed, new approaches in baseline data collection and 
analysis are needed. In this paper we illustrate a generic framework that combines some new and existing approaches and opportunities to 
extend environmental baselines through time and expand their spatial coverage. In doing so we illustrate how baseline data can be collected in a 
cost-effective and appropriate manner.  
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1. Introduction 

In establishing effective marine environmental baselines for CCS operations there are generally three related objectives. The 
first is an assessment of any potential environmental risk faced by the marine environment in the unlikely event CO2 was to 
escape from the storage complex and reach the overlying marine ecosystem. For this there is a need to identify the structure, 
function and potential sensitivities of those marine ecosystems above the storage complex. The second objective is to construct 
baselines that enable efficient and rapid yet rigorous CO2 release detection or assurance monitoring. For this an understanding of 
seep dispersion and resulting chemical signatures is crucial. The third objective is to enable impact (or lack of impact) 
assessment, for which understanding the footprint of potentially damaging hypothetical seeps must be considered alongside an 
understanding of habitat variability and sensitivity to external pressures not related to storage. In the current paper we deal with 
the collection of information and data that could potentially contribute to each of these objectives. We are mindful, however, that 
here we only consider the upper seafloor and overlaying water column and do not consider deeper geological assessments.     

 
The purpose of this paper is to highlight a series of approaches that could be used to create an effective environmental baseline 

specifically for industrial-scale, offshore Carbon dioxide Capture and Storage (CCS) projects. Whilst some of the actual data 
collection methods proposed in the paper are not new, the specific use of these data to describe environmental conditions across 
larger spatial and temporal domains in the context of CCS are. It is the challenge of scaling up across space and time while 
maintaining an appropriate level of detail that reflect a major difference between the requirements of CCS environmental 
baselines when compared to more traditional environmental surveys. An additional complication associated with CCS activities 
is that the potential contaminant involved is carbon dioxide (CO2) which, as an abundant and naturally occurring compound in 
the marine environment, is a fundamental part of the marine ecosystem and is involved in a myriad of biological and chemical 
processes. Consequently, discriminating between natural variability in CO2 related processes or parameters and any changes to 
the environment specifically due to CO2 leakage from CCS, as well as predicting the potential risks and impacts associated with 
leaks, requires a far greater understanding of baseline conditions than were needed for previous industrial activities (e.g. oil and 
gas extraction). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Location map of the Goldeneye study site, NE of Peterhead, Scotland. 

 
Whilst the approaches presented in this paper are intended to be generic and applicable to the majority of offshore CCS 

projects we have used a specific location to demonstrate how these approaches can be applied to a real world situation. The 
location we selected was the Goldeneye Field in the Central North Sea (fig. 1). Goldeneye is a depleted gas field operated by 
project partner Shell, and was operational from 2004 till 2011. It was planned that this site would be used as an industrial scale 
demonstration project for CCS but due to changes in UK government policy and funding these plans have yet to be realized.  
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It should however be noted that marine systems are characterised by high levels of heterogeneity, such that different storage 
sites will have different baseline variability and therefore different strategies for anomaly detection and different environmental 
sensitivities. So whilst in this paper Goldeneye is used as an exemplar for the application of the approaches we propose, the 
specific results we present cannot be directly applied to other storage areas.  

2. Generic methodological framework 

In this paper we propose a generic methodological framework that can be used effectively in CCS environmental baseline data 
acquisition and baseline construction (fig. 2). This framework suggests three main steps, each involving a series of activities. The 
first step is the initial site characterization which will use a combination of broad-scale acoustic surveys, remote sensing 
observations and computer based modelling to define and map the potential type and extent of marine habitats, biomes and 
features that exist within the area above the CCS complex. Once these areas have been defined the second step is to use this 
information to guide the collection of biological, physical and chemical data to confirm the accuracy of these maps, validate the 
remote sensing algorithms and model predictions and to generate greater understanding of marine environment above the CCS 
complex. This greater understanding will then underpin the next step which is to use existing acoustic and remote sensing data, 
plus computer model hind-casts and forecasts to recreate detailed multi-year baselines specific to the storage complex. It will also 
be used to extrapolate between point sources of data to provide a more extensive spatial coverage than can be achieved from 
sampling alone. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig. 2. A proposed generic framework for building a cost effective, CCS environmental baseline. 
 
Both the initial site characterization and the subsequent hind cast baseline reconstruction activities in fig.2 involve aspects of 

seabed mapping, remote sensing and computer based modelling. Whilst, in practice, these 3 activities are strong linked, both with 
each other and with the data collection activity, for ease of presentation these activities will be discussed separately. However, 
before these methodologies are discussed it is important to consider a cost effective strategy by which baseline data collection can 
be prioritized and thus avoiding the collection of excess data and wasting resources.  

3. Adopting a hierarchical approach to data collection 

The marine environment that sits above a typical CCS complex is likely to be extremely large, possibly covering tens to 
hundreds of square kilometers. Consequently, collecting a broad suite of environmental data from across the entire area would be 
prohibitively expensive and time consuming. In order to ensure effective environmental baselines can be constructed we propose 
CCS projects should adopt a hierarchical approach to data collection with four distinct Tiers of data collection. These Tiers would 
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be based on a nested set of geographic areas with data at the broadest scale (Tier 1) being largely generated from existing, 
modelled or remotely sensed data (as described above), whilst data collected at the finest spatial and temporal scales (Tier 4) 
would involve more direct collection of environmental data.  

 
 Understanding the wider geographical context of storage complex by exploring processes out to the furthest 

extent of potential influence or impact [Tier 1].  

 
This would be done at the beginning of the CCS project but could also be updated every 10 years as new data and information 

become available. These repeated assessments would be useful for ensuring the continued validity of the original model 
projections and for monitoring changes in the primary production climatology of the area. Outputs from Tier 1 assessments 
would help to identify important biogeographic features (such as functionally different ecosystems or water bodies) that might 
exist above the storage complex. Examples of Tier 1 outputs include; Ecosystem modelling of baseline carbonate chemistry data 
(hindcast and projections) and remote sensing to reconstruct primary production climatology of the area. 

 
 Initial broad-scale mapping of the marine environment directly above the entire extent of the geological complex 

within which the predicted storage site is located (including seabed, water column and human uses) [Tier 2]. 

 
This broad-scale mapping exercise could be conducted once at the start of the baseline parameters collection activity. The 

results from this mapping exercise would identify the specific locations that would require Tier 4 data collection (e.g. CO2 
injection well, old or existing wells, identified geological features that facilitate transport, specifically sensitive biological 
features). Collection of field data would involve surveys that combine side scan sonar from towed fish (or Automated Underwater 
Vehicles) with ship based multi-beam echosounder surveys to describe the seabed environment. Habitat definitions would be 
ground-truthed with point source samples where required. Visual (photography or video) surveys documenting physical features, 
type and conspicuous organisms or biogenic structures could also be conducted. Using this approach it is also possible to map 
human, physical structures and artefacts (e.g. munitions dumps, oil infrastructure, pipeline strengthening material location, litter, 
ship wreck location, fishing impacts and trawl tracks) as well as natural structures (e.g. Pock marks, reefs and rocks, natural gas 
bubble streams and fields) that might be of interest. It may be useful to undertake soundscape mapping should passive acoustic 
monitoring for bubbles become an accepted monitoring tool. Desk-based data gathering could be undertaken to identify other 
(potentially conflicting or consequential) users of the marine environment above the whole geological storage complex. In 
addition, existing (or relic) wells, chimneys, geological weaknesses, potential sources of current or historical contamination 
should be identified. Collecting shallow seismic data on seabed (including uppermost layers of overburden) structure, type and 
anomalies (including both natural e.g. fractures and chimneys, and manmade e.g. existing exploration, extraction or injection 
wells) to identify potentially high risk pathways for leakage would help identify Tier 4 areas.  
 

 Using fine scale computer based modelling, validated by targeted field observations, to describe the structure and 

function of those habitats occurring directly above the maximum expected spatial extent of CO2 storage [Tier 3]. 

 
Using high-resolution 3D local models, with simulations of hypothetical CO2 seep scenarios, to identify potential perturbation 

footprints and contribute to EIA and development of monitoring strategies. Higher resolution modelling of the Tier 2 
biogeochemical dynamics would enable validation and development using targeted observations and sample collection. This 
validation should be done at a spatial and temporal frequency sufficient to capture the variability predicted in the model 
projections. Validation data should ideally be collected regularly to maintain confidence on model predictions. 

 
 Detailed spatially and temporally resolved surveys in all habitats located above the expected storage site which 

are considered to be at the highest risk from leakage (i.e. have the highest probability of leakage or greatest 

potential sensitivity to leakage impact) [Tier 4] 

 
These areas are considered at highest risk from CCS leakage so should be assessed at the greatest level of detail. Observations 

of organisms or processes that could be impacted by CO2 release should be made seasonally and annually resolved with the 
highest possible frequency sampling across 3 successive years. These data should be repeatedly collected every 10 years. The 
purpose of these data is not primarily to detect or monitor for CO2 leakage but to provide a baseline against which the impact of a 
leakage event could be assessed in the unlikely event that a leak should occur. 

4. Seabed Habitat Description 

We propose that an important step in constructing an effective environmental baseline should be to collect broad scale seafloor 
morphological and sedimentological/substrate information. The most cost effective way of doing this over a large area is to use 
active acoustic seabed mapping techniques. Currently available and widely used techniques can be used to define seabed 
‘landscapes’ as derived from geo-morphological classifications [1]. These landscapes can cover areas of 10’s km at a resolution 
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of 5-10m and are therefore appropriate for providing information at the Tier 1 level. In addition, using ship or Autonomous 
Underwater Vehicle (AUV) based acoustics with point observations (ground-truthing) for model calibration and validation, 
seabed habitats can be defined by using geo-spatial models to extrapolate point observations. Using this approach habitat maps 
can be constructed over areas from 1-10 km with a resolution of 1 – 5 m. This would support the assessment of seabed habitats 
from above the storage complex (Tier 2).  

 
Data collected using multi-beam echosounders provide information about depth (i.e., bathymetry) and seabed acoustic 

reflectivity (i.e. backscatter, which is a useful proxy for substratum) [2]. Also sidescan sonar (for seafloor reflectivity) and 
seismic techniques (for bathymetry and reflectivity) can be used to map seabed characteristics to a certain extent. These datasets 
form the backbone of any physical and geo-morphological mapping that will support the baseline, plus they are essential for the 
planning of further operational activities in the area. For CCS projects that are using previously exploited oil and gas reservoirs, 
these acoustic data may already be available. However, existing data may not always be of adequate resolution, extent or quality 
for more fine-scale discrimination of seabed features (Tier 3 or 4). This was the case at the Goldeneye site were analysis was 
carried out on existing high-resolution datasets, which unfortunately had limited spatial extent. We also used the first return 
(depth and amplitude) from a 3D seismic dataset to contribute to the seafloor morphological maps. However, the quality of the 
seismic data did not allow for anything greater than a Tier 2 analysis, which meant further data had to be acquired for Tier 4.  

 
Ideally, for smaller (less than 1km2) areas that have been identified as needing the greater levels of data coverage (Tier 4), 

comprehensive multibeam echosounder or sidescan sonar surveys should be carried out around each area. For the Goldeneye 
example, using a ship-mounted multi-beam system, surveying at 8 knots, would produce a 5 m x 5 m bathymetric grid. This 
resolution would provide a good quality dataset to interpret seafloor morphology, but may miss fine-scale changes in seabed 
bathymetry potentially associated with slow and diffuse gas seeps. For even finer resolutions at this water depth (~110 m) an 
AUV could be used, with a similar multibeam system, to achieve a pixel resolution of 1 m x 1 m. To enable the most detailed 
seabed characterisation (spatial distribution of sediment type, seabed disturbance from fishing (trawl marks) and from 
hydrocarbon extraction activities (e.g. cuttings piles, seafloor infrastructure, scars)), high resolution sidescan sonar surveys (~400 
kHz) are required. To achieve full habitat maps, the acoustic data will have to be combined, using geo-spatial statistics, with 
direct observations of the seabed (ground-truthing) i.e. seabed photographs, video data, grab samples or cores that will provide 
real information on sediment type and faunal communities. However, given that it is not possible to image or sample the entire 
seafloor, the acoustic maps form the main vehicle to extrapolate robustly the point-source information gained from seabed 
samples into a full coverage map [3].  

5. Using remote sensing (satellite) imagery to define the spatial extent of pelagic marine ecosystems and understanding 

seasonal patterns in ecosystem function 

Much of the natural spatial and temporal variability seen in seabed ecosystems and marine biogeochemistry is driven by 
seasonal patterns in phytoplankton blooms which can vary in their structure, timing, intensity and duration. In addition, 
phytoplankton blooms have the capacity to take up CO2 from seawater through the process of photosynthesis and can therefore 
influence the local carbonate chemistry dynamics. All of this means that understanding the primary production characteristics of 
an area is an important part of any initial site characterisation. This is especially important when assessing large spatial areas that 
could be influenced by more than one water mass each of which could have different physical, chemical and biological 
properties. In addition, an understanding of the primary production climatology of an area will help describe the overall 
ecosystem structure and function and can usefully inform the ecosystem level models described in section 6 below. Due to the 
scale over which satellite observations can be collected, ocean colour data can make a significant contribution to providing both 
Tier 1 and Tier 2 level data.  

 
An example of ocean colour time series for the region is given in fig. 3. An initial assessment, integrating more than 10 years 

of existing remote sensing data from across the Goldeneye area, has demonstrated the value in using satellite derived ocean 
colour products to generate a detailed historic climatology for the area. Specifically, the Goldeneye storage complex was shown 
to sit below two functionally different pelagic marine ecosystems. The boundary between these ecosystems appears to run 
roughly NW to SE through the Goldeneye platform area. However, the precise location of this boundary is highly variable from 
year to year and could cause considerable inter-annual variability in Chl a and Primary Production (PP) across the sites. Future 
baseline data collection at this site should be mindful of this boundary area and should endeavor to collect data from each of these 
two contrasting ecosystems. 

 
 



6 GHGT-14 Widdicombe et al 

 
 

Fig. 3. Climatology in SeaWiFS Chlorophyll-a (mg m-3) at Golden Eye from 1998 to 2010. SeaWiFS Chlorophyll-a can be used to compute primary production 
[4,5,6,7]. Analysis of historic ocean colour data can provide the baseline which can then be used to monitor perturbation in primary production around the CCS 

site. 
 
As previously mentioned, the close coupling between primary production and carbonate chemistry [8,9,10,11] underpins the 

importance of understanding natural phytoplankton patterns and processes in areas overlaying CCS complexes. However this is 
not just limited to understanding the natural function of marine ecosystems and describing the short-term temporal and spatial 
heterogeneity existing above CCS complexes. In light of continuingly increasing levels of atmospheric CO2, and the 
corresponding phenomena of ocean acidification, it is critical that long-term changes in pelagic ecosystems are not falsely 
attributed to CO2 release from CCS. For example, in diatoms, some cyanobacteria and coccolithophorids, elevated CO2 can lead 
to an increase in photosynthesis especially in large chain forming diatoms [12,13], Synechococcus spp. [14] and Emiliania huxleyi 
[15], suggesting that these taxa will behave differently in a future ocean with elevated levels of CO2. 

 
Measures of primary production are already being used to describe ecosystem health. Recently the European Union Marine 

Strategy Framework Directive has identified the maximum peak in Primary Production (PP) during the growing season, and the 
Productivity (PP/Chlorophyll a biomass) as appropriate indicators of changes in the environment and the ecosystem. The 
collection of long time series on primary production has helped to implement a seasonal reference baseline and ascertain 
evolution and the carrying capacity of the ecosystem. This has been termed ‘Baseline Indicator FW2: Phytoplankton Production’. 
Threshold levels are determined for each OSPAR sub-region by annual primary production that should not exceed 300 gC m-2 yr-

1 in coastal ecosystems with daily values of primary production should be less than 2-3 gC m-2 d-1
 during phytoplankton blooms. 

It is essential that, should areas around CCS projects fail to meet these measures of ocean health in the future, such a failure 
should not be falsely attributed to CO2 seepage. Remote sensing could be a powerful tool in demonstrating that changes are 
operating over spatial scales that couldn’t possibly be attributable to CCS seepage. 

 
In conclusion we propose that the use of remote sensing and satellite derived ocean colour data is an increasingly powerful 
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tool for understanding both the short-term (intra-annual) and long-term (inter-annual to decadal) patterns in pelagic production. 
This information will be important for i) defining the geographic extent of functionally different marine ecosystem and how these 
boundaries shift through time, and ii) understanding the changes in marine ecosystem functioning those caused by other 
environmental and anthropogenic drivers and differentiate these from changes that could be attributed to CCS activities.  

6. Using ecosystem models to supplement environmental data acquisition and sampling design. 

As previously discussed a comprehensive environmental baseline for CCS activities should ideally contain several years of 
data prior to the start of any storage activity in order to quantify (climate driven) inter-annual variability  as well as a full annual 
description that resolves the significant seasonal cycles in the system and their (weather driven) variability. Variability at tidal to 
sub diurnal timescales can also be important, especially for detection monitoring. These data need to cover a broad geographical 
area equivalent to the storage complex and surrounding areas of influence. The data also needs to be multivariate; information on 
currents and mixing, CO2 chemistry, key chemical components such as nutrients and oxygen, basic biological metrics such as 
production, sediment distributions, bottom morphology and key species information are all necessary or useful. Unfortunately 
this will rarely be possible to derive from direct observations for both logistical and financial reasons; direct observation data of 
marine systems, especially when requiring ship-borne deployments is expensive and consequently available data is sporadic and 
sparse, confined to a sub-set of the variables of interest, worse for near sea-bed data. Earth observation data provides excellent 
spatio-temporal coverage but of a very limited variable set limited to the surface ocean. Marine biogeochemical models however 
can provide high resolution, depth resolved, multivariate, internally consistent hindcast and forecast data [16], (fig 4). Generally 
models deliver hydrodynamic, chemical and basic biological metrics but not information on sediments, morphology and specific 
species. Of course models are not perfect representations of reality with errors due to the concatenation of thousands of individual 
species and processes into perhaps tens of functional groups and hundreds of mathematically defined processes. Never-the-less 
models are common research tools in international oceanography and the majority of the globes’ oceans are described by pre-
existing and often fairly sophisticated, evaluated model systems [17].  

 

 
 

Fig. 4. (a) Modelled annual mean pH (indicating CO2 concentration) in the North Sea, (b) multiple annual cycles of modelled pH from three different sites as 
indicated in (a). 

 
In order to provide some utility for CCS operations, marine models require a reasonable characterisation of hydrodynamic 

mixing, including tidal processes and a biogeochemical or ecosystem model which describes changes in carbonate (CO2) 
chemistry due to bio-physical processes and the basic biological components of the system, namely primary production, 
consumers and ideally benthic  processes.  

 
Initially and at minimal cost, off-the-peg regional model simulations are able to provide hind- and forecasts of physical-

biogeochemical data which, alongside E.O. data can quantify how baselines may be naturally changing due to drivers that are 
unconnected with CCS activities. For example, climate change, eutrophication, deoxygenation and changes in fishing pressure 
are all factors that could impact upon the environment above a CCS complex that could drive change that could falsely be 
attributed to CCS [17]. The model data will further assist in the planning of detailed observational strategies. 

 
A second, potential investment requiring stage is to nest high-resolution model domains describing specific storage sites at sub 
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kilometre to metre scale, which enable the simulation of speculative leak scenarios [18,19,20,21,22]. By understanding the 
dynamics and dispersion of the resulting plumes and their associate chemistry we can define impact footprints as part of a EIA 
risk analysis [23] as well as plan detailed detection monitoring strategies including the identification of site-specific anomaly 
criteria [24,25] and optimal platform deployment [26,27,28]. 

 
Thirdly, models are always improved by “real” data, such that assimilating or entering a model evaluation – development 

cycle utilising the site specific observations could improve model fidelity.  
 
Finally, models can indicate some features of ecosystem response to perturbation from high CO2 [29], but they are not yet 

sufficiently developed to be able to comprehensively predict ecological impacts of CO2 seeps. 
 
When used in conjunction with field data collection, ecosystem models provide us with powerful tools to supplement a lack of 

observational data with a modelled understanding of the marine ecosystem and an in-silico testbed for deriving monitoring 
strategies. 

7. Managing the information and creating an integrated environmental baseline database 

All spatial data gathered for baseline studies will need efficient and effective data management. Given its spatial nature, the 
use of Geographical Information Systems (GIS), effectively spatial databases, is strongly recommended. GIS systems allow the 
user to work with datasets of different scales, sources and types of coverage (full coverage raster datasets and spatially explicit 
vector datasets), and hence are perfect to move seamlessly between the different Tiers. They also provide functionality to 
combine or convert datasets recorded in differing coordinate systems (datum and projection). GIS also provides the framework 
for combining survey data (remote sensing, acoustic surveys and point observations collected for model calibration and 
validation) with additional spatial data sets. In order to represent the distribution and intensity of fishing effort with the study 
area, spatial grids of Vessel Monitoring System data (locational monitoring of larger fishing vessels whilst fishing) were 
imported into the Goldeneye GIS project. The Vessel Monitoring System data were used to stratify the Goldeneye site according 
to fishing effort, and thereby potentially proportion environmental or biological change induced by multiple and overlapping 
anthropogenic activities. Furthermore, GIS files stating the location of oil and gas seafloor infrastructure (e.g. well heads, jackets 
and pipelines) can be buffered to account for historical contamination, cutting piles and scour pits that might also compromise the 
detection of impacts specific related to gas leakage. Finally, GIS also provides the required tools for comparing overlapping 
surveys over time. For example, topographic changes in pockmark morphology may indicate the location of gaseous seeps. 
Ultimately, the GIS environment allows the user to combine pelagic and benthic data sets, with modelled data, and multiple 
sources of anthropogenic information into one, integrated framework. Overlap analysis can then be used to identify (i) consistent 
pelagic and benthic environments requiring specific baselines, (ii) overlapping anthropogenic activities that might confound the 
quantification and attribution of impacts, (iii) the identification of information gaps and data shortcomings that need to be 
addressed for full site characterisation and impact detection.  

8. Summary 

To meet the challenges of constructing environmental baselines that adequately account for large spatial and temporal scales, 
and thereby provide public reassurance that any potential risks are both identified and managed, new approaches in baseline data 
collection and analysis are needed. In this paper we have illustrated a framework that combines a series of new and existing 
approaches. This provides CCS operators with an opportunity to combine a variety of data types to extend environmental 
baselines through time and expand their spatial coverage. We propose this integrated framework as a supportive approach to 
constructing an effective environmental baseline, suitable for supporting offshore CCS activities in terms of leak detection 
monitoring, environmental risk assessment and impact quantification. This approach uses existing data, acoustic surveys, 
satellite, remote sensing and model derived data to map and describe habitat distributions, environmental conditions and 
ecosystem functioning across large areas. Coupled ecosystem-biogeochemical models can also be used to extrapolate data 
through space and time in order to determine monthly, seasonal or inter-annual modes of variability and trends in the biochemical 
and biological parameters of these areas. Results from broad-scale surveys, observations and models can be used to cost-
effectively design and implement in-situ data collection activities, to ensure data are collected at the most appropriate locations 
and frequencies. Whilst each potential CCS site will have its own unique baseline requirements due to in-situ bio-physical 
characteristics, the baseline quantification techniques and approaches presented here are designed to be generic, allowing them to 
be applied to the majority of offshore storage sites located within coastal shelf seas. Their implementation should allow for a 
more practical and rapid assessment of baseline conditions thus allowing potential CCS projects to proceed more quickly.  
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